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Executive Summary: The field of decision-
making under uncertainty is evolving towards
data-driven approaches that incorporate side in-
formation (covariates) into decision processes.
Recent advancements in machine learning and
stochastic optimization have fostered a shift to-
wards contextual optimization, utilizing covari-
ates observed before decisions to mitigate un-
certainty. Our survey paper covers three ma-
jor frameworks of contextual optimization: de-
cision rule optimization, sequential learning and
optimization, and integrated learning and opti-
mization. Practical challenges include identify-
ing relevant covariates and developing scalable
models. Despite these hurdles, contextual opti-
mization holds significant potential for dynamic,
personalized decision-making across various do-
mains, necessitating further exploration and de-
velopment.

Acknowledgments: We thank Prof. Yang
Haoxiang and Prof. Georgio Consigli for provid-
ing us the opportunity to share our views on con-
textual stochastic optimization and suggesting
improvements.
The field of decision-making under uncer-

tainty is increasingly embracing data-driven ap-
proaches, which leverage historical data to pre-
scribe actions. Traditionally, these methods have
concentrated on quantifying uncertainty (assign-
ing probability distributions in stochastic pro-
gramming or constructing uncertainty sets for
robust optimization) based only on previously
observed realizations of the uncertain parame-
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ters affecting the performance of the decisions.
However, a significant paradigm shift has oc-
curred recently toward contextual optimization
methods, propelled by advancements in machine
learning and stochastic optimization, and the
need for effective high-stakes decision-making
in various domains, e.g., energy grid manage-
ment, portfolio optimization, supply chain man-
agement, etc. This shift involves incorporating
side information (covariates), which is revealed
just before an action is taken, into the decision-
making pipeline to mitigate the uncertainty more
effectively . The side information could include
weather conditions, which affect road congestion,
in a last-mile delivery problem, or social media
posts reflecting on publicly traded companies’
recent achievements in a portfolio management
problem.

Specifically, in a contextual optimization prob-
lem, a decision maker observes a set of covariates
that are correlated with the uncertain parame-
ters before taking an action. One further as-
sumes that the decision-maker has access to a set
of historical observations of covariates and corre-
sponding uncertain parameters’ values sampled
from the true, yet unknown, underlying distri-
bution. The objective of the decision-maker is
to find a policy, which suggests an action as a
function of the covariates, that minimizes an ex-
pected cost that depends on the joint distribu-
tion of the covariates and uncertain parameters.
[9] identified three data-driven frameworks that
together cover most of the approaches proposed
in the literature on contextual optimization. In
this column, we summarize these three frame-
works and point to recent advancements to stim-
ulate further interest in this topic. While it’s im-
practical to delve into all relevant studies in this
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column, we have selected a representative set of
papers based on our subjective judgment.
The first approach, which we refer to as deci-

sion rule optimization, involves explicitly defin-
ing the policy as a parametric function of ob-
served covariates and solving the resulting em-
pirical risk minimization problem. This method
gained prominence in the operations research
community through the seminal paper [2] “Big
Data Newsvendor: Practical Insights from Ma-
chine Learning”, where a regularized newsvendor
problem is solved with an order quantity that de-
pends linearly in the covariates. Unfortunately,
linear decision rules can be too rigid to achieve
the best possible performance even with an arbi-
trarily large dataset. To enhance performance,
recent studies have explored projecting the co-
variates to a reproducing kernel Hilbert space
and using linear decision rules in the lifted space.
This approach retains some of the computational
advantages of linear methods while achieving
greater adaptability. Alternatively, the adoption
of nonlinear policies through deep neural net-
works, decision trees and distributionally robust
decision rules has further expanded the capabil-
ity of decision models to handle more complex,
nonlinear relationships between covariates and
decision outcomes.
A second approach proposes learning a condi-

tional probability distribution that is then ex-
ploited by a stochastic program to produce a
policy. This can address the asymptotic optimal-
ity issue of decision rules when the distribution
model is well specified given that with enough
data, the true model could be recovered. We re-
fer to this framework as sequential learning and
optimization (SLO, also known as estimate then
optimize) where the first step consists in learn-
ing a prediction of the conditional distribution
and the second step involves solving a stochastic
program with this model conditioned on the new
observed realization of the covariates is observed.
An interesting and widely studied special case
arises when the cost function is linear in the pa-
rameters, e.g., in shortest-path problems. By lin-
earity of expectation, SLO reduces to predicting
the conditional mean of parameters, served by
training using a least square error loss, followed

by a deterministic optimization involving the ex-
pected cost vector. For non-linear cost functions,
a popular method employs a discrete conditional
distribution model, e.g., residuals-based distri-
bution, k-nearest neighbour, kernel density esti-
mation, random forests, etc. We refer interested
readers to [5] for a benchmarking study of such
SLO and decision rule methods.
The effectiveness of sequential learning and

optimization heavily depends on the accuracy of
the prediction model. When there are predic-
tion errors, which is usually the case with limited
data, the decisions could be suboptimal. By sep-
arating the prediction and optimization stages,
we may fail to capture the potential feedback
loop where decision-quality could be used to tune
the prediction model. This limitation of sequen-
tial learning and optimization is addressed with
an Integrated Learning and Optimization frame-
work (see Figure 1) that aims to learn a pre-
diction model to improve the decision-quality,
rather than reducing the prediction/statistical
error [3]. For instance, in a health supply chain
management context, [6] observe that an inte-
grated learning and optimization model can dis-
criminate between the poorly stocked and well-
stocked facilities based on the inventory opti-
mization problem, and thereby, shifts its predic-
tive precision towards the facilities where ensur-
ing adequate supplies is crucial. This targeted
prediction significantly reduces the risk of under-
stocking in regions with high demand and lower
prior inventory levels.
With the advancements made in automatic

differentiation for end-to-end training of differ-
entiable composite functions, there is a surge
of interest in identifying convex loss functions
and differentiable proxies for non-differentiable
components in the integrated learning and opti-
mization framework. One of the computational
challenges is that when the cost function is bi-
linear in the action and uncertain parameter,
the solution of the linear program is piecewise
constant with respect to the uncertain parame-
ter’s distribution, hence offering no useful infor-
mation regarding the direction of improvement.
To circumvent this issue, the expected cost es-
timator can be learned using a convex approxi-

2



𝒰

 
Optimization

Model  
Prediction Decision 

quality
DecisionContext

Label

Tune the predictions

Figure 1: Integrated learning and optimization

mation of the decision-based loss function [8] or
by randomly perturbing the expected cost pre-
dictions [4]. For quadratic program (or more
generally strongly convex decision models), the
prescribed decision is linked to the distribution
model through the Karush–Kuhn–Tucker (KKT)
conditions. The latter form equations that can
be differentiated through using the implicit func-
tion theorem [1, 7]. Several other methods have
been proposed to improve computability [Sec-
tion 5 of 9] which has led to the development
of numerous packages e.g., TorchOpt, JAXopt,
Theseus, PyEPO and benchmarks for integrated
learning and optimization.

For practical application of integrated learn-
ing and optimization, several theoretical and ap-
plied challenges must be overcome. One of the
problems is the difficulty to recognize, within
the limited real-world data, covariates that are
strongly correlated with the uncertain parame-
ters. Most current works rely on synthetic en-
vironments or on real-world environments (e.g.,
stock market data) but with a very limited
number of covariates. To empirically validate
the efficacy of these methods in large-scale sys-
tems, it is essential to develop surrogate mod-
els and loss functions that reduce the compu-
tational burden of training. Furthermore, iden-
tifying the appropriate hypothesis class of pre-
diction models that will generalize to new data
remains a complex challenge. On the theoretical
side, there are a few results on the finite sam-
ple guarantees on their performance. To achieve
robust and risk-aware prescriptions, contextual
optimization methods will need to incorporate

uncertainty in the constraints and its possible
decision-dependence, two aspects that are over-
looked by existing methods. In light of mandates
such as the European Union’s General Data Pro-
tection Regulation, which enforces the “right to
explanation,” one can expect that real-world im-
plementation of contextual optimization meth-
ods will be subjected to fairness, privacy, ex-
plainability, and interpretabality requirements.
To close, we wish to share our view that contex-
tual optimization is a rich field of research that
has the potential to transform the way we employ
stochastic programming in a world where deci-
sions need to be reactive and personalized, and
are expected to make best use of a constantly
growing collection of data. We encourage in-
terested readers to pursue their investigation of
contextual stochastic optimization by referring
to our recently published survey [9].
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