#### Subsidizing a New Technology: An Impulse Stackelberg Game Approach

Utsav Sadana Department of Computer Science and Operations Research

University of Montreal

utsav.sadana@umontreal.ca



(Joint work with Georges Zaccour)

Dynamic Games and Applications Seminar, 2024



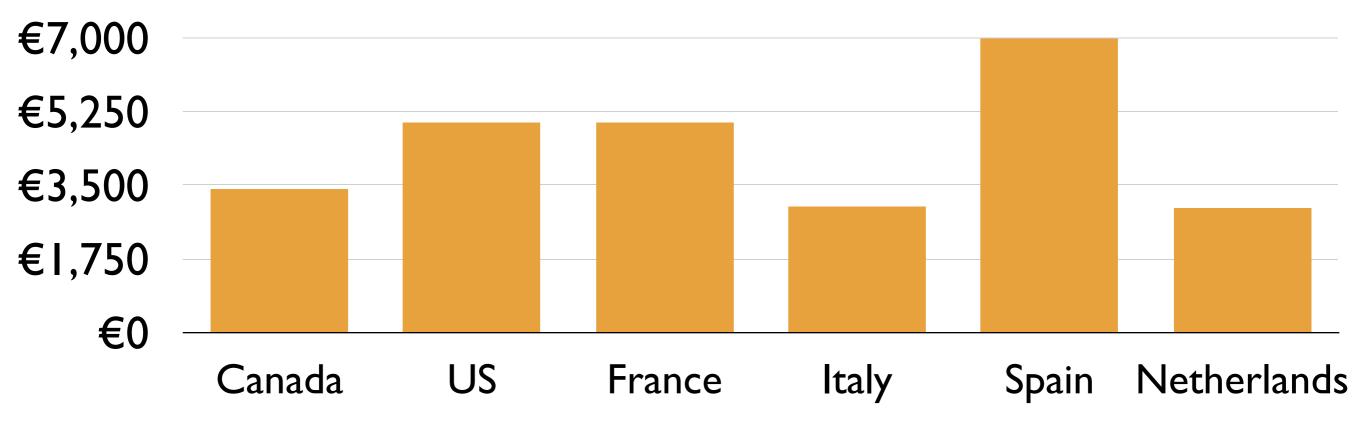




#### Economic policies need to be analyzed in terms of the incentives they create, rather than the hopes that inspired them

- Thomas Sowell

#### Price subsidies on electric vehicles



# Why subsidize new technology?

## Price subsidy

- Making firms that sell electric vehicle price competitive
  - Learning-by-doing: Unit production cost decreases with experience [Levitt et al., 2013]
- Increase adoption of electric vehicles

Levitt, S., List, J., and Syverson, C. (2013). Towards an Understanding of Learning by Doing: Evidence from an Automobile Assembly Plant. Journal of Political Economy. 121(4):643–681.

#### Literature: Subsidy and incentives

- Do manufacturers fully pass over the subsidy to consumers?
- Kaul et al (2016) analyzed the car scrappage program
  - Subsidized buyers paid little more than those who were ineligible for subsidy
- Jimenez et al. (2016): increase of €600 in car prices on average after a scrappage program was announced in Spain

#### Literature: new durable product diffusion

- -Initiated by Bass (1969)
  - In 2004, voted one of the ten most influential papers published in Management Science during the last fifty years
  - Forecasting: through word-of-mouth communication, early adopters influence not yet adopters' purchasing decision
  - Firm is passive, no pricing decisions

#### Literature: Pricing

- Extensions of Bass Model:
  - Robinson & Lakhani (1975): Continuous-time
     optimal-control problem to determine prices
  - Eliashberg & Jeuland (1986): Two-stage model of pricing (monopoly followed by duopoly)
  - Dockner & Jorgensen (1988): Price
     competition in a dynamic oligopoly

#### Literature: Dynamic Games

- Kalish & Lilien (1983): Study the effect of price subsidy on adoption rate
  - Government maximizes units sold by subsidy program's terminal date
  - Lilien (1984): Application to US Photovoltaic Program
- Zaccour (1996) computed open-loop Nash equilibrium between government (that decides subsidy rate) and firm
- Dockner (1996) solved Stackelberg game with government as leader

#### Critique of earlier models

- Criticisms by Janssens & Zaccour (2014):
  - Different planning horizons for government and firm
  - Assumption of linear decrease in unit cost
  - Maximizing units sold is costly and inefficient
- Assumption: Subsidy can be changed at each time instant.

#### Our Approach

- Our approach (Sadana and Zaccour, 2024):
  - Government makes discrete subsidy adjustments
    - Discrete subsidy values are more realistic
  - Firm continuously adjusts price while government acts at discrete time instants.
  - We keep the assumption of unit cost linearly decreasing in cumulative sales

## Literature:

# Differential games with impulse control

- Nash equilibrium in nonzero-sum differential games:
  - Only impulses (no continuous controls)
  - One player using impulse control and another using continuous control<sup>2, 3, 4</sup>

<sup>1</sup> Aïd, R., Basei, M., Callegaro, G., Campi, L., and Vargiolu, T. (2020). "Nonzero-Sum Stochastic Differential Games with Impulse Controls: A Verification Theorem with Applications." MOR, 45(1):205-232.

<sup>2</sup> Sadana, U., Reddy, P.V., Başar, T., and Zaccour, G. (2021). "Sampled-Data Nash Equilibria in Differential Games with Impulse Controls." JOTA, 190(3):999-1022.

<sup>3</sup> Sadana, U., Reddy, P.V., and Zaccour, G. (2021). "Nash equilibria in nonzero-sum differential games with impulse control." EJOR, 295(2):792-805.

<sup>4</sup> Sadana, U., Reddy, P.V., and Zaccour, G. (2023). "Feedback Nash Equilibria in Differential Games With Impulse Control." TAC, 68(8):4523-4538.

# Stackelberg game model for subsidy rollout

# Target sales

- Canadian Zero-Emission Vehicles program target is 100% new light-weight vehicles sales by 2035, and it will run until March 31, 2025, or until available funding is exhausted.
- President Obama in 2011 set the target of "one million electric vehicles on the road by 2015."

## Model: Two-Player Stackelberg game

- p(t): electric vehicle price,
- subsidy at time t:  $s(t) \in S = \{0, s_1, \dots, s_M\}$
- x(t) : cumulative sales
- Sales rate:

$$\dot{\boldsymbol{x}(t)} = \begin{cases} \alpha_1 + \alpha_2 \boldsymbol{x}(t) - \beta(\boldsymbol{p}(t) - \boldsymbol{p}_a), \text{ no subsidy} \\ \alpha_1 + \alpha_2 \boldsymbol{x}(t) - \beta(\boldsymbol{p}(t) - \boldsymbol{s}(t) - \boldsymbol{p}_a), \text{ subsidy} \end{cases}$$

Demand

Word-of-mouth effect

Price of gasoline car

## Model: Firm's objective

- Maximize discounted profit over  ${\cal T}$ 

$$J^{f} = \max_{p(t)} \int_{0}^{T} e^{-\rho t} (p(t) - c(x(t))) \dot{x}(t) dt$$

- Cost to capture learning-by-doing:

$$c(x(t)) = b_1 - \frac{b_2}{2} x(t)$$
Speed of learning

#### Model: Government's problem

- Government: subsidy adjustment  $\eta_i$  at  $\tau_i$ ,  $i = \{1, \dots, N\}$ 

$$s\left(\tau_{i}^{+}\right) = s\left(\tau_{i}^{-}\right) + \eta_{i}$$

#### Model: Government's problem

- Reach target sales  $x_s$  at  $\tau_{N+1} < T$  with minimum expenditure
- Fixed cost associated with subsidy adjustments: C

$$J^{g} = \min_{\eta_{i}, \mathbf{x}(\tau_{N+1}) \ge \mathbf{x}_{s}} \left( \int_{0}^{\tau_{N+1}} e^{-\rho t} \mathbf{s}(t) \dot{\mathbf{x}}(t) dt + \sum_{i=1}^{N} e^{-\rho \tau_{i}} C \delta_{\eta_{i} > 0} \right)$$

Government's Feedback strategy

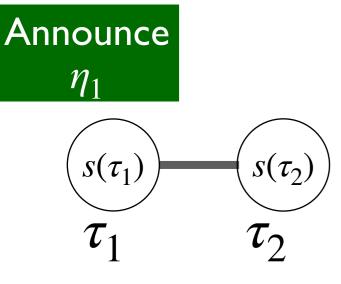
 $\eta_i = \gamma^g(\tau_i, s(\tau_i), x(\tau_i))$ 

$$p(t) = \gamma^f(t, s(t), x(t))$$

Government's Feedback strategy

 $\eta_i = \gamma^g(\tau_i, s(\tau_i), x(\tau_i))$ 

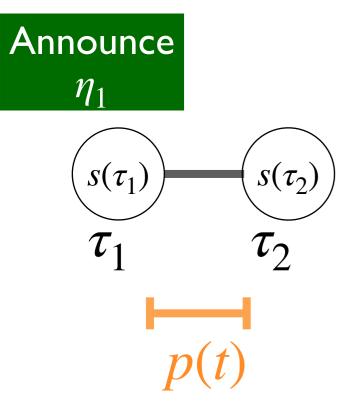
$$p(t) = \gamma^f(t, s(t), x(t))$$



Government's Feedback strategy

 $\eta_i = \gamma^g(\tau_i, s(\tau_i), x(\tau_i))$ 

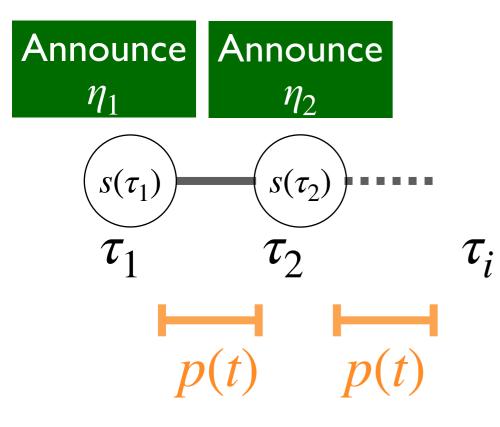
$$p(t) = \gamma^f(t, s(t), x(t))$$



Government's Feedback strategy

$$\eta_i = \gamma^g(\tau_i, s(\tau_i), x(\tau_i))$$

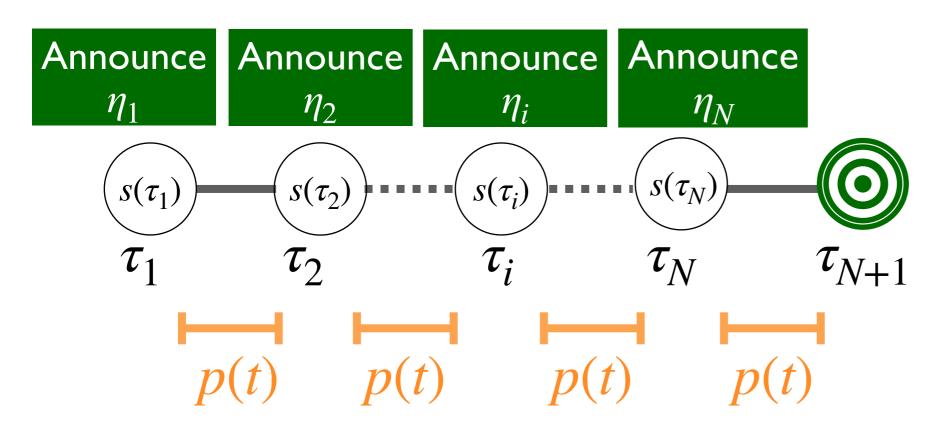
$$p(t) = \gamma^f(t, s(t), x(t))$$



Government's Feedback strategy

$$\eta_i = \gamma^g(\tau_i, s(\tau_i), x(\tau_i))$$

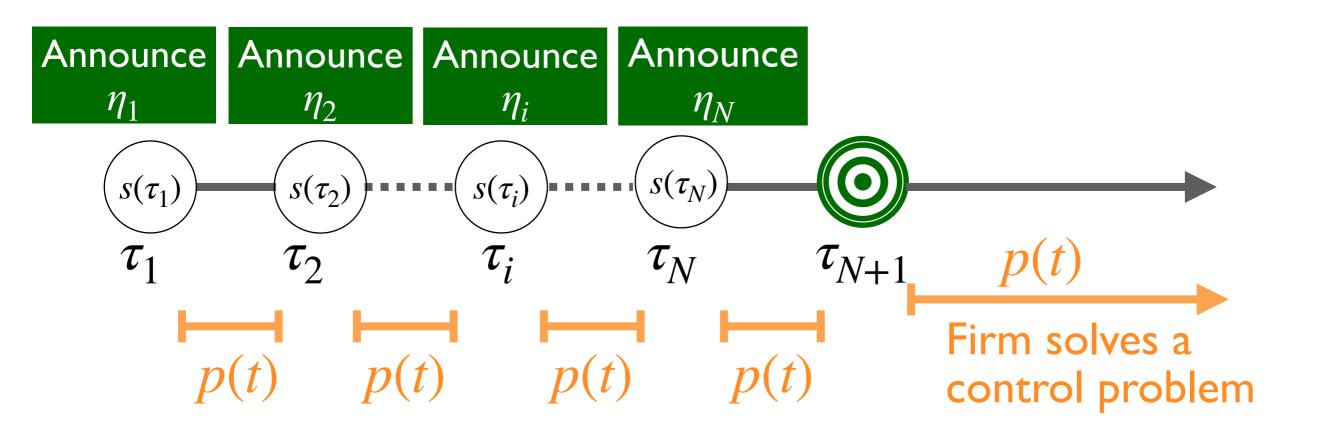
$$p(t) = \gamma^f(t, s(t), x(t))$$



Government's Feedback strategy

$$\eta_i = \gamma^g(\tau_i, s(\tau_i), x(\tau_i))$$

$$p(t) = \gamma^f(t, s(t), x(t))$$



- Take any time, cumulative sales, and subsidy:

- Take any time, cumulative sales, and subsidy:

- Government announces strategy  $\gamma^g$ 

- Take any time, cumulative sales, and subsidy:
  - -Government announces strategy  $\gamma^g$
  - $-\hat{\gamma}^{f}(\cdot,\gamma^{g})$  is firm's best response to  $\gamma^{g}$

- Take any time, cumulative sales, and subsidy:
  - -Government announces strategy  $\gamma^g$
  - $-\hat{\gamma}^{f}(\cdot,\gamma^{g})$  is firm's best response to  $\gamma^{g}$
  - - $\hat{\gamma}^{g}$  minimizes the government's cost given best response  $\hat{\gamma}^{f}(\cdot, \hat{\gamma}^{g})$

- Take any time, cumulative sales, and subsidy:
  - -Government announces strategy  $\gamma^g$
  - $-\hat{\gamma}^{f}(\cdot,\gamma^{g})$  is firm's best response to  $\gamma^{g}$
  - - $\hat{\gamma}^{g}$  minimizes the government's cost given best response  $\hat{\gamma}^{f}(\cdot, \hat{\gamma}^{g})$
  - Pair  $(\hat{\gamma}^g, \hat{\gamma}^f)$  constitutes the FSE of the game

# Solving the game

# Firm's problem

## Computing equilibria: Firm's problem

HJB equation  

$$\rho v^{f}(t, x) - v^{f}_{t}(x) = \max_{p(t)} \left[ (p(t) - c(x(t)) + v^{f}_{x}(t, x)) \times (\alpha_{1} + \alpha_{2}x(t) - \beta(p(t) - p_{a})) \right]$$

# Computing equilibria: Firm's problem

► After the target date \u03c8<sub>N+1</sub>, firm solves LQ control problem

HJB equation  

$$\rho v^{f}(t, x) - v^{f}_{t}(x) = \max_{p(t)} \left[ (p(t) - c(x(t)) + v^{f}_{x}(t, x)) \times (\alpha_{1} + \alpha_{2}x(t) - \beta(p(t) - p_{a})) \right]$$

# Computing equilibria: Firm's problem

- ► After the target date \u03c8<sub>N+1</sub>, firm solves LQ control problem
- $\blacktriangleright$  Subsidy is 0 in this region

HJB equation  

$$\rho v^{f}(t, x) - v^{f}_{t}(x) = \max_{p(t)} \left[ (p(t) - c(x(t)) + v^{f}_{x}(t, x)) \times (\alpha_{1} + \alpha_{2}x(t) - \beta(p(t) - p_{a})) \right]$$

# Firm's problem

- Value function of the firm satisfies Hamilton-Jacobi-Bellman equation (HJB)
- How to solve HJB equation? Infinite dimensional problem
- Search for value functions in space of quadratic (in state) functions

$$v^{f}(t,x) = \frac{1}{2}k_{2}(t)x^{2} + k_{1}(t)x + k_{0}(t)$$

## Ricatti system

$$\rho k_{2}(t) - \dot{k}_{2}(t) = \frac{\beta}{2} \left( \frac{w_{2}}{\beta} + k_{2}(t) \right)^{2}$$
$$\rho k_{1}(t) - \dot{k}_{1}(t) = \frac{\beta}{2} \left( \frac{w_{1}}{\beta} + k_{1}(t) \right) \left( \frac{w_{2}}{\beta} + k_{2}(t) \right)$$
$$\rho k_{0}(t) - \dot{k}_{0}(t) = \frac{\beta}{4} \left( \frac{w_{1}}{\beta} + k_{1}(t) \right)^{2}$$

► Between consecutive decision dates  $\tau_i$  and  $\tau_{i+1}$ for  $i \in \{0, 1, \dots, N\}$ 

- ▶ Between consecutive decision dates  $\tau_i$  and  $\tau_{i+1}$ for  $i \in \{0, 1, \dots, N\}$ 
  - government does not act

- ▶ Between consecutive decision dates  $\tau_i$  and  $\tau_{i+1}$ for  $i \in \{0, 1, \dots, N\}$ 
  - government does not act
  - Value function of the firm satisfies Hamilton-Jacobi-Bellman equation

- ▶ Between consecutive decision dates  $\tau_i$  and  $\tau_{i+1}$ for  $i \in \{0, 1, \dots, N\}$ 
  - government does not act
  - Value function of the firm satisfies Hamilton-Jacobi-Bellman equation
  - Quadratic (in-the-state) value function

## Ricatti system: between impulse dates

Value function depends on the subsidy level

$$\begin{aligned} \tau_i^+ &\le t \le \tau_{i+1}^- \\ \rho k_2(t) - \dot{k}_2(t) = \frac{\beta}{2} \left( \frac{w_2}{\beta} + k_2(t) \right)^2 \\ \rho k_1(t) - \dot{k}_1(t) = \frac{\beta}{2} \left( \frac{w_1}{\beta} + k_1(t) + s(\tau_i^+) \right) \left( \frac{w_2}{\beta} + k_2(t) \right) \\ \rho k_0(t) - \dot{k}_0(t) = \frac{\beta}{4} \left( \frac{w_1}{\beta} + s(\tau_i^+) + k_1(t) \right)^2 \end{aligned}$$

#### ...at impulse dates

- Value function of the firm is continuous at the impulse date
- However, a change of subsidy introduces kinks in the value function

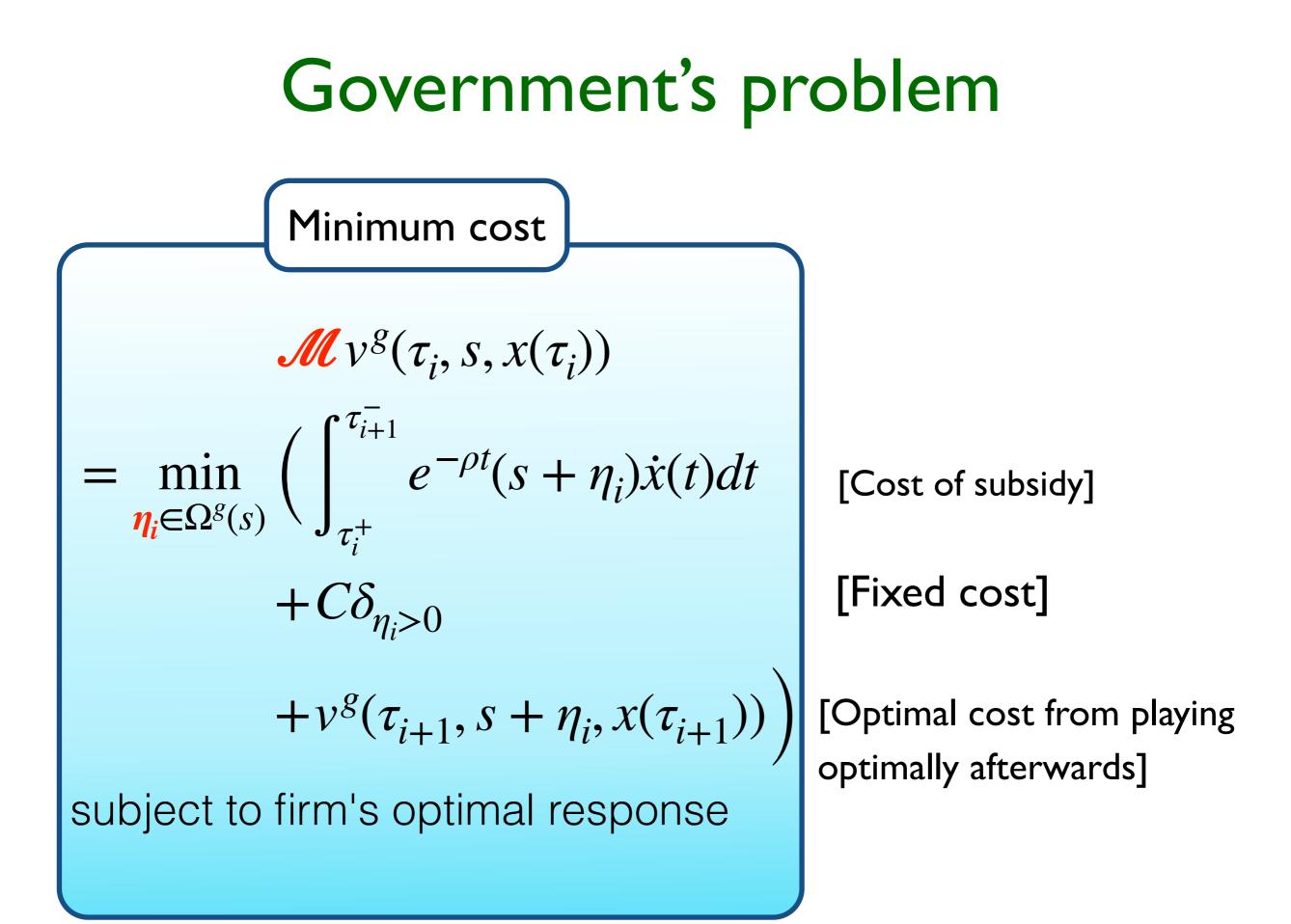
$$k_{2}(\tau_{i}^{+}) = k_{2}(\tau_{i}^{-})$$
$$k_{1}(\tau_{i}^{+}) = k_{1}(\tau_{i}^{-})$$
$$k_{0}(\tau_{i}^{+}) = k_{0}(\tau_{i}^{-})$$

- Government has the **target** to reach at least state  $x_s$  by time  $\tau_{N+1}$
- If target is not reached  $\Rightarrow$  infinite penalty
- v<sup>g</sup>: value function of the government

- Government has the **target** to reach at least state  $x_s$  by time  $\tau_{N+1}$
- If target is not reached  $\Rightarrow$  infinite penalty
- $v^g$ : value function of the government

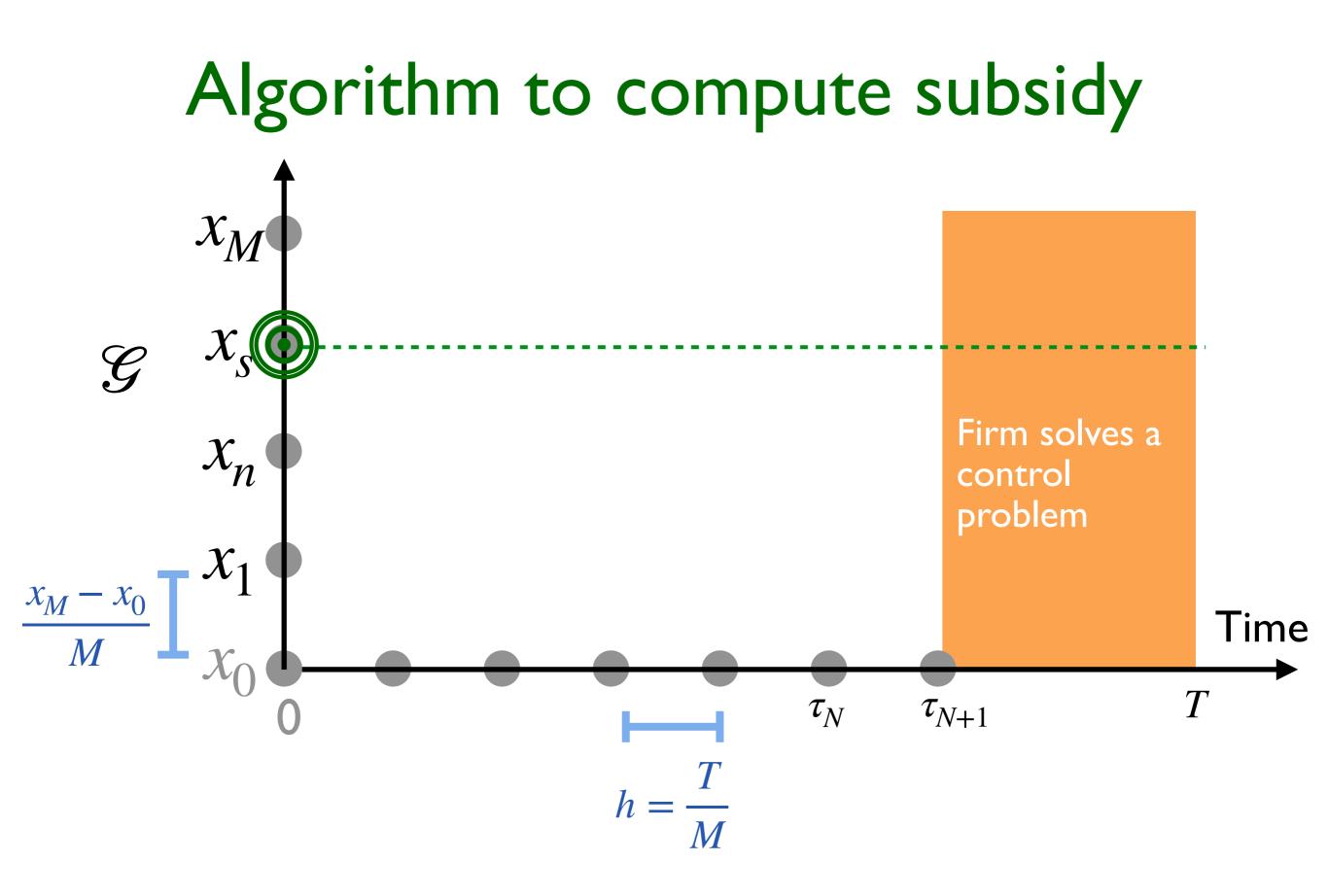
Terminal condition  

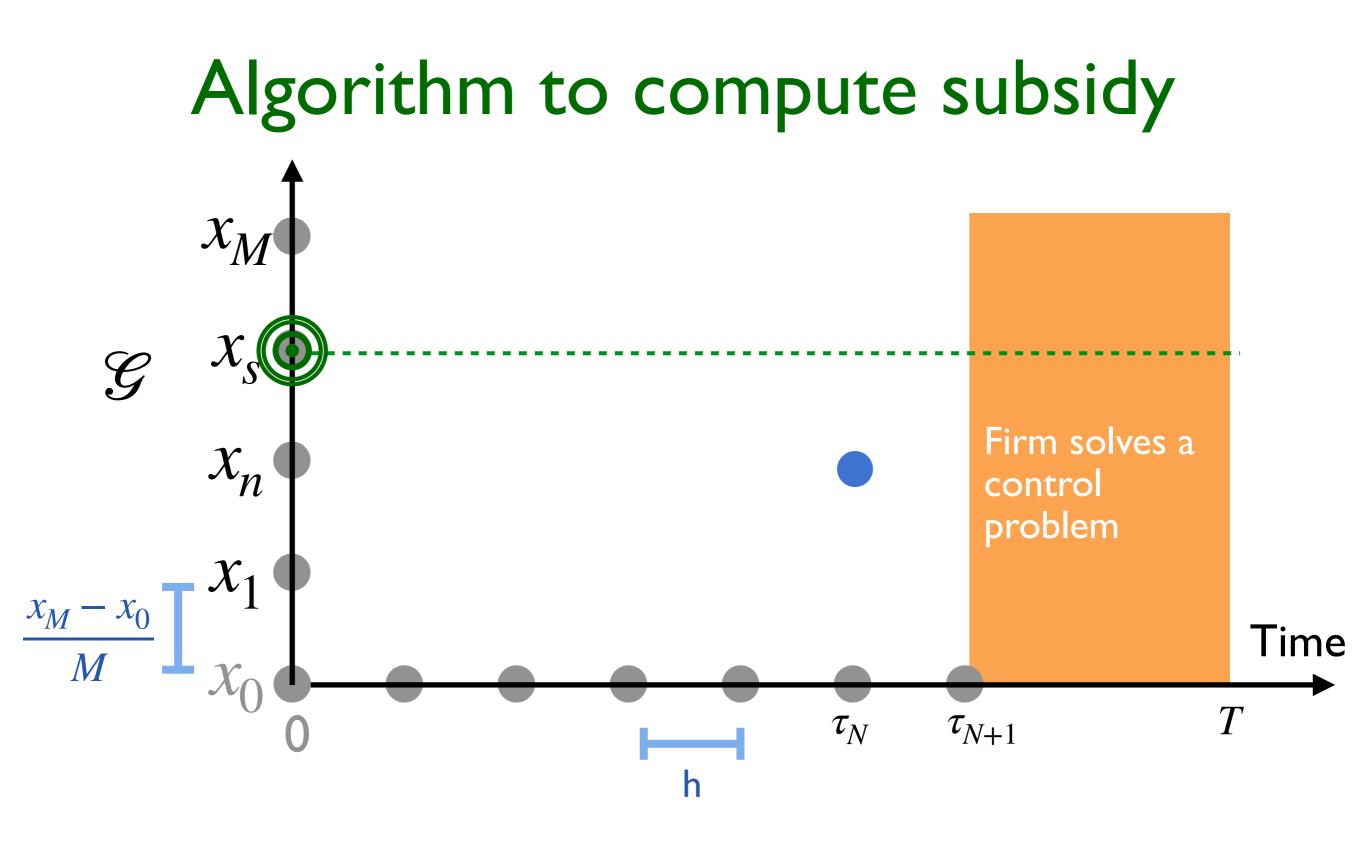
$$v^{g}(\tau_{N+1}, s(\tau_{N+1}), x(\tau_{N+1})) = \begin{cases} 0, \text{ if } x(\tau_{N+1}) \ge x_{s} \\ \infty, \text{ otherwise.} \end{cases}$$

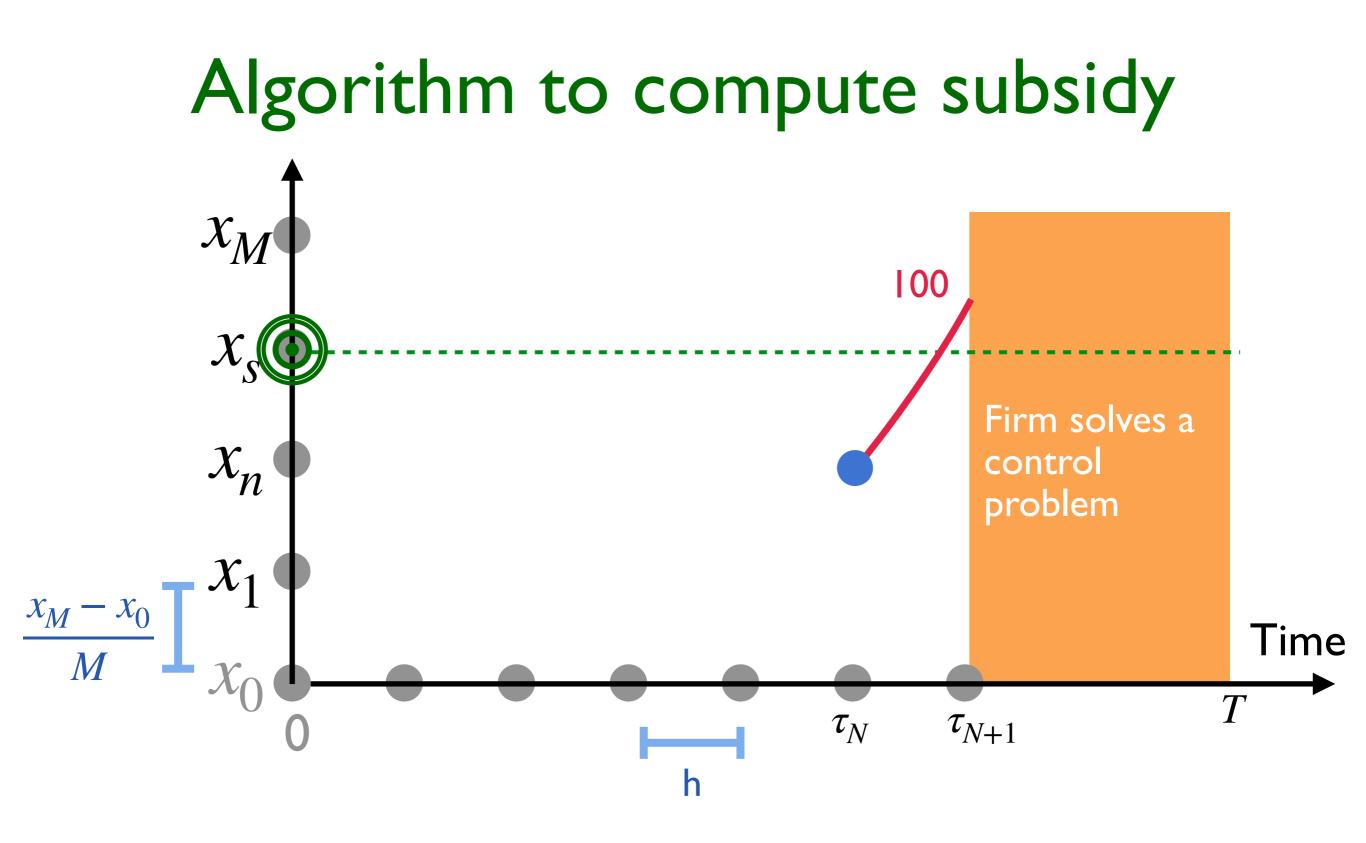


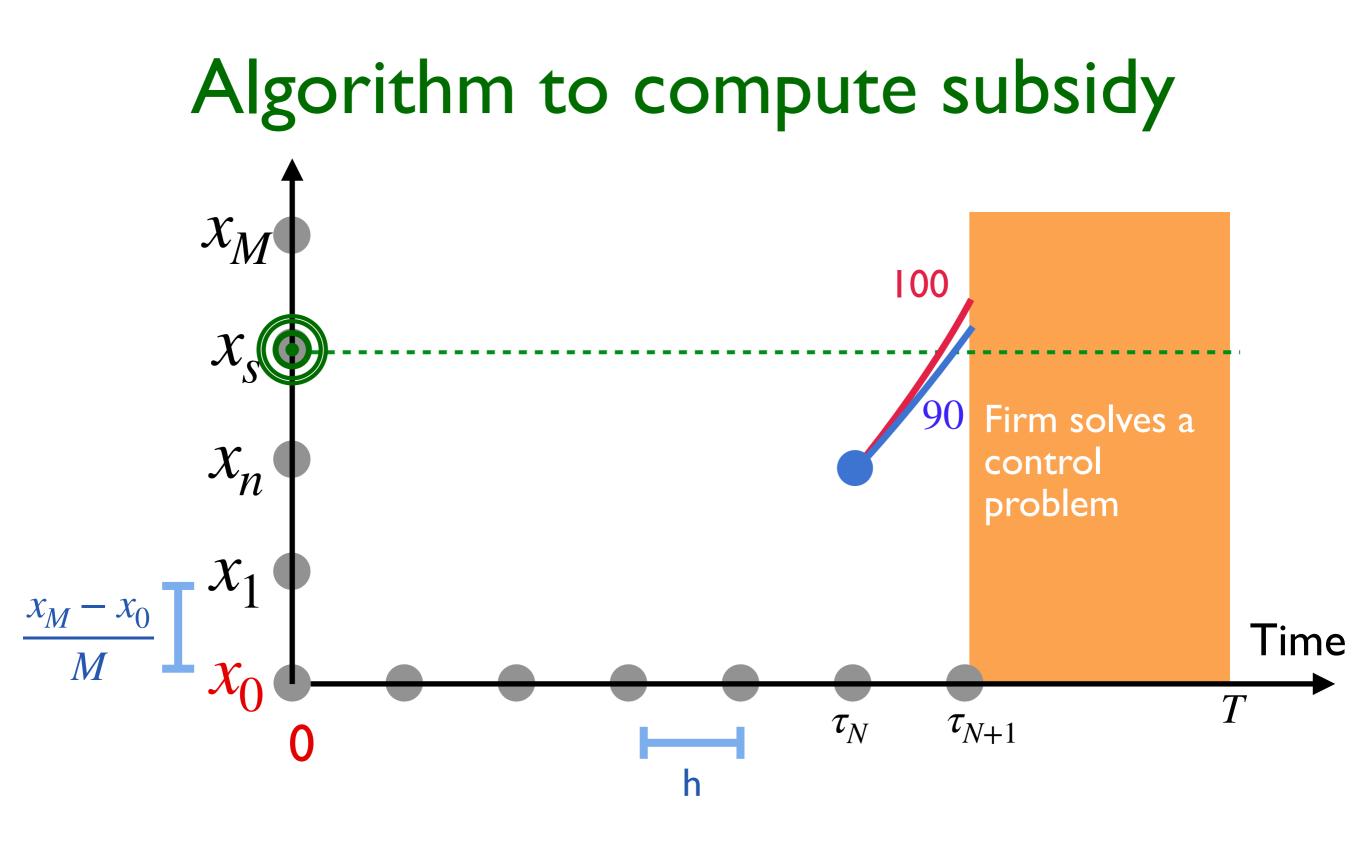
 Value function should be equal to the minimum cost that can be achieved by government by playing optimally

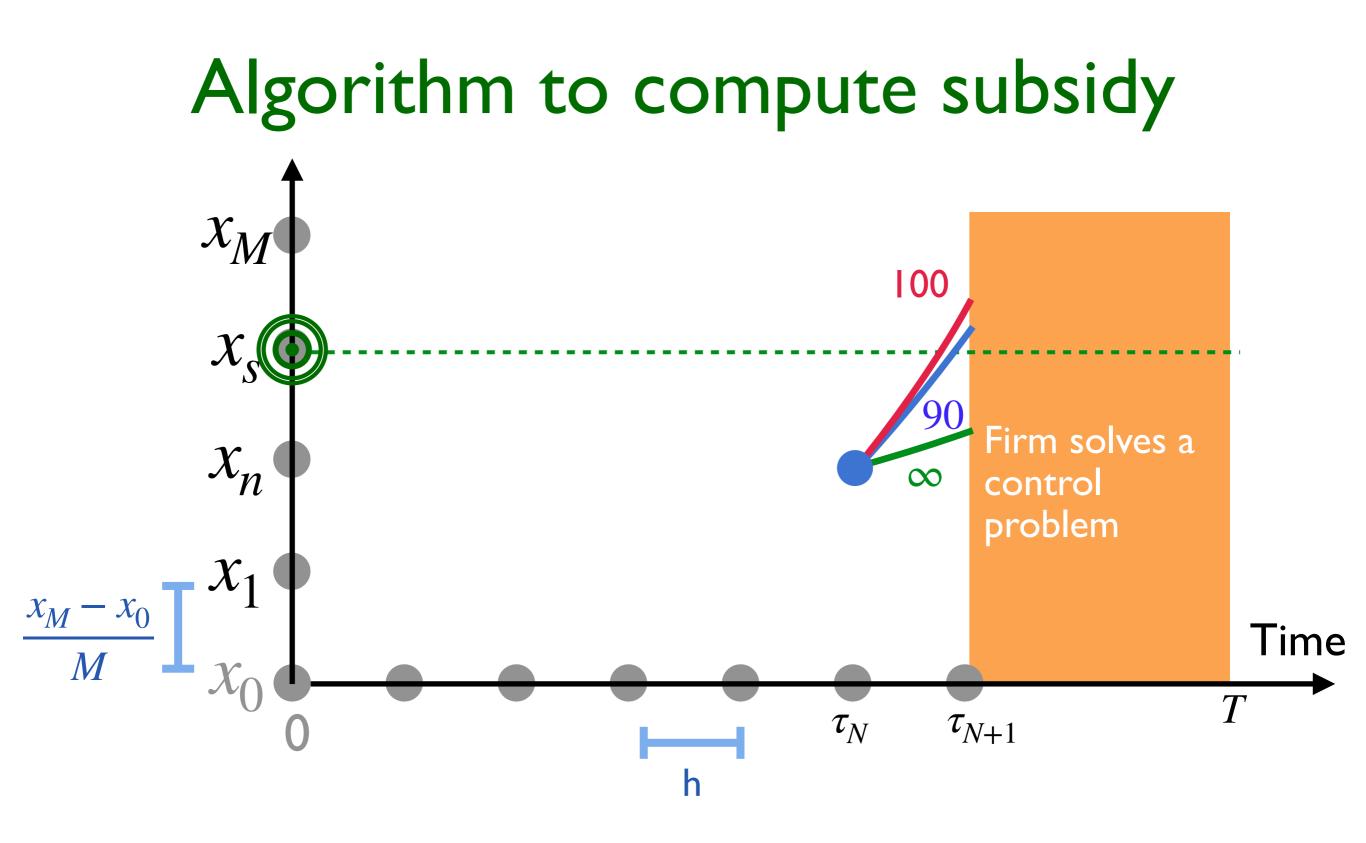
 $v^g(\tau_i, s, x(\tau_i)) = \mathscr{M}v^g(\tau_i, s, x(\tau_i))$ 

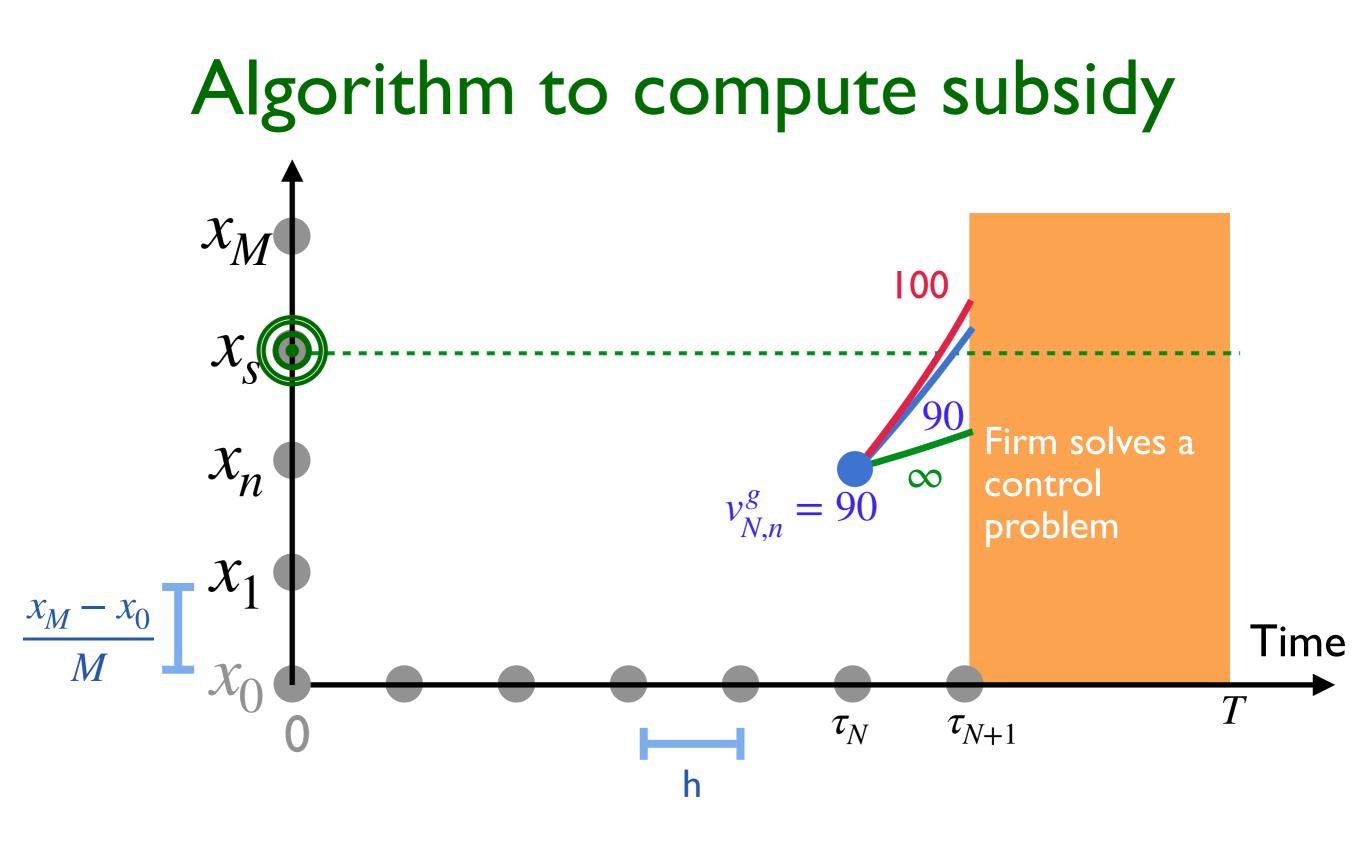


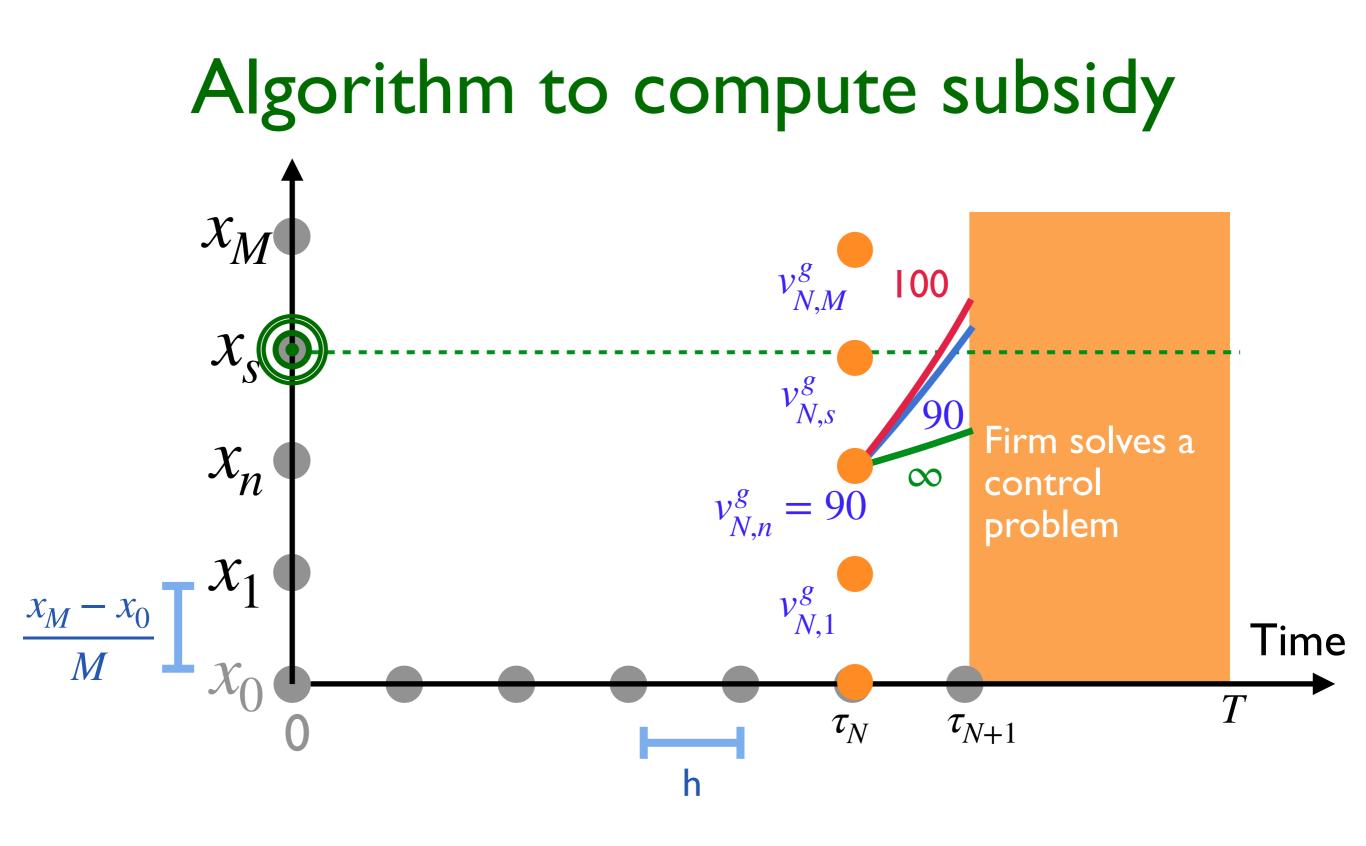


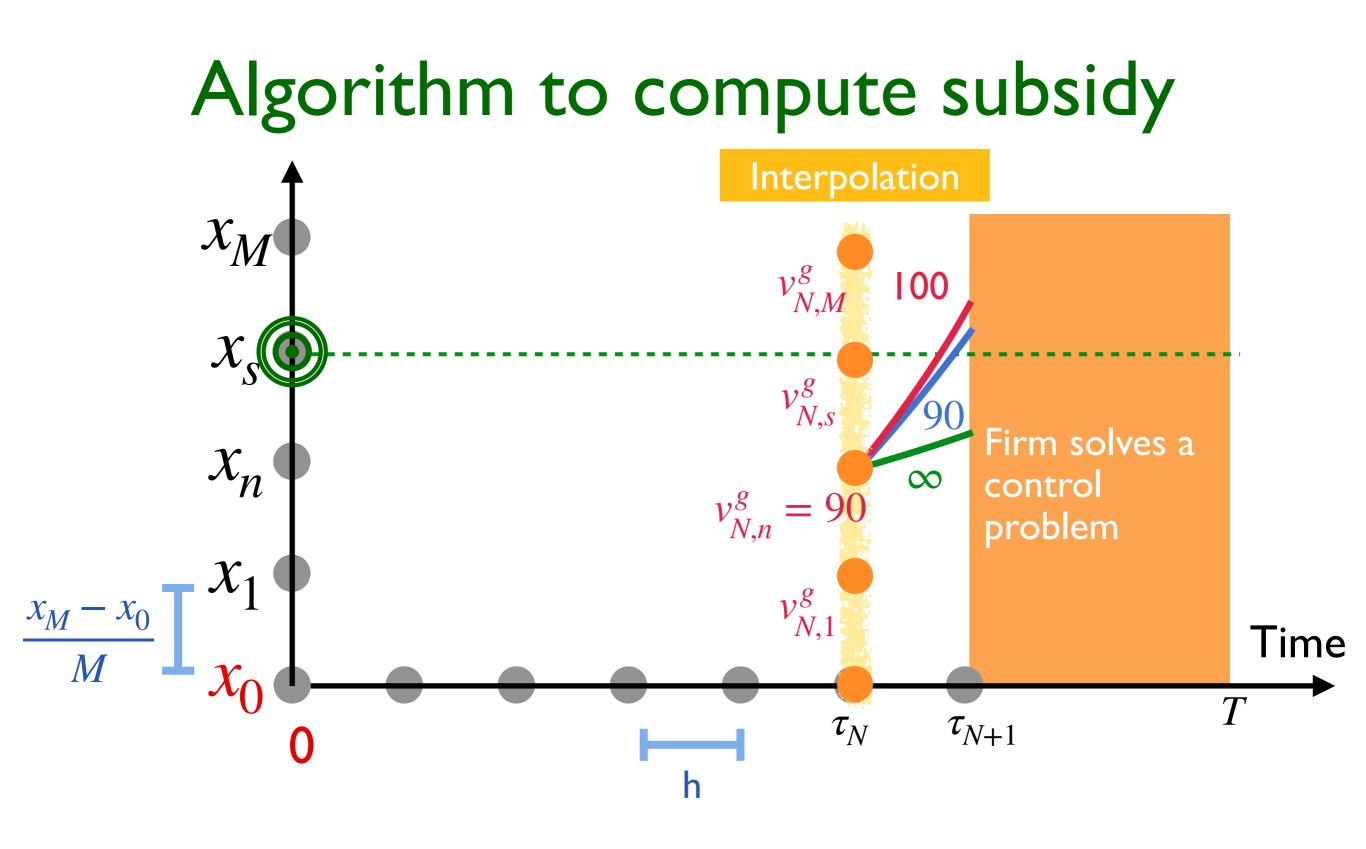


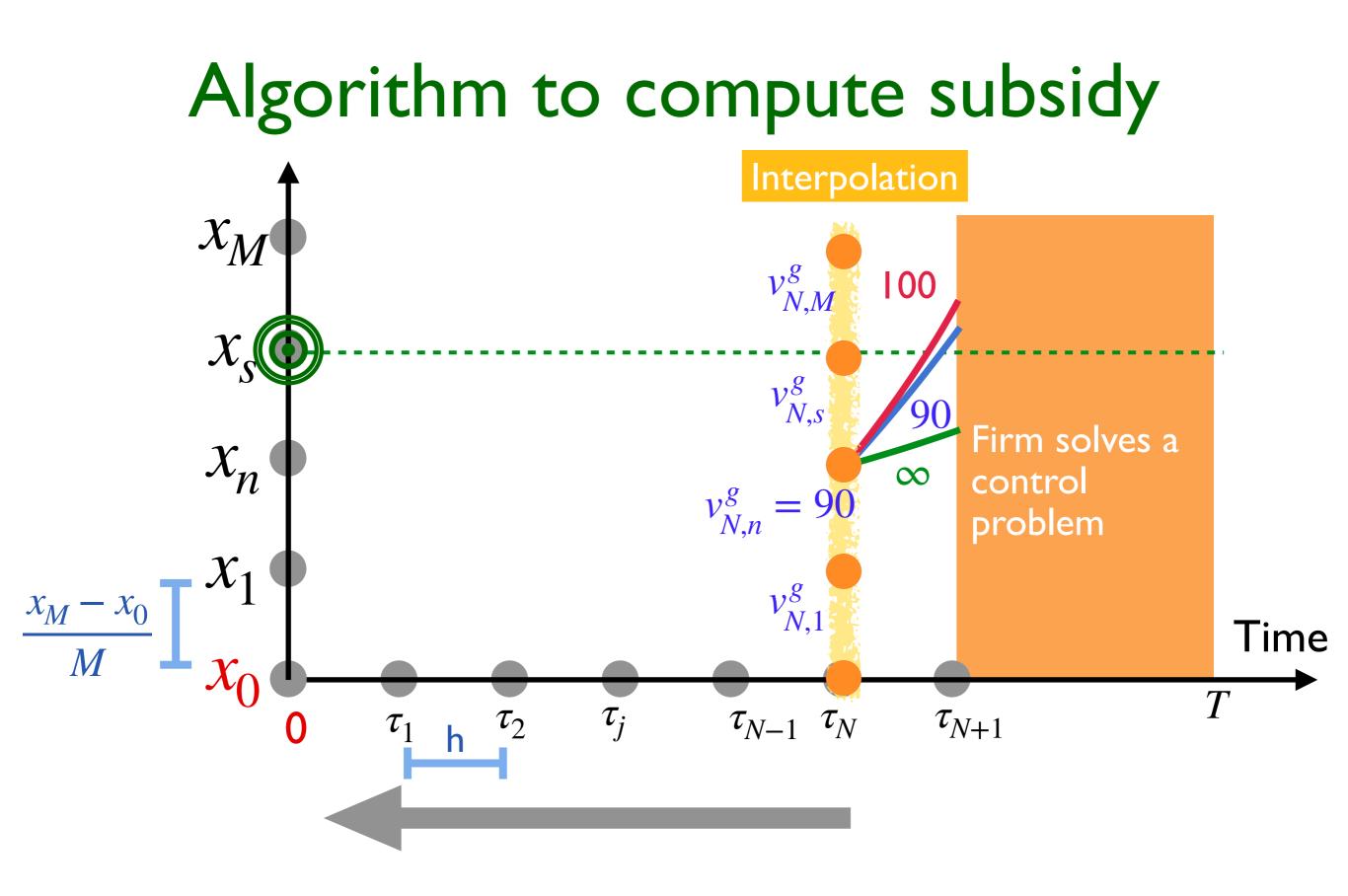












#### Numerical example

Speed of learning  $b_2$  $J^f = \max_{p(t)} \int_0^{18} e^{-0.1t} (p(t) - (50 - 0.8x(t)))\dot{x}(t)dt$ 

$$J^{g} = \min_{\eta_{i}} \left( \int_{0}^{10} e^{-0.1t} s(t) \dot{x}(t) dt + \sum_{i=1}^{2} e^{-\rho \tau_{i}} 10 \delta_{\eta_{i}} \right)$$

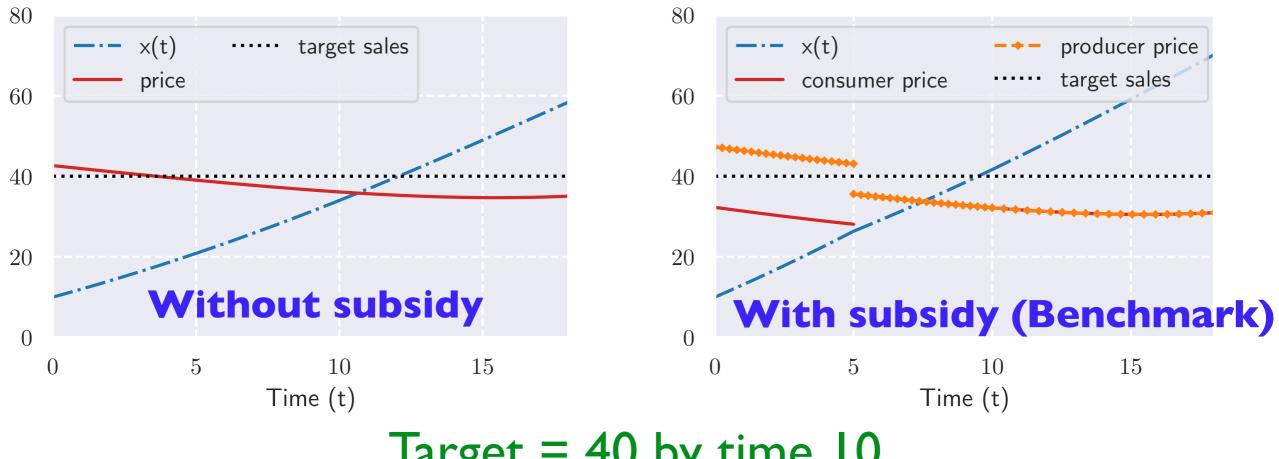
$$\dot{x}(t) = 6 + \underbrace{0.01}_{x(t)} x(t) - 0.1(p(t) - s(t) - 1)$$

$$\uparrow Word-of-mouth \alpha_2$$

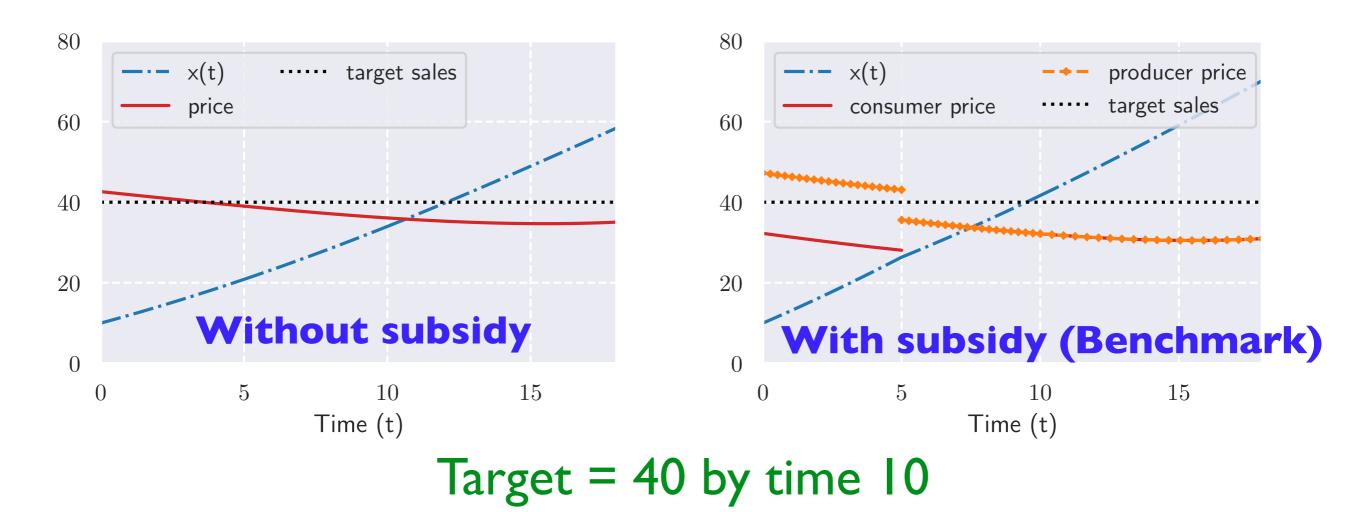
$$s(\tau_i^+) = s(\tau_i^-) + \eta_i$$
 for  $i = \{1, 2, ..., N\}$ 

#### Target = 40 by time 10

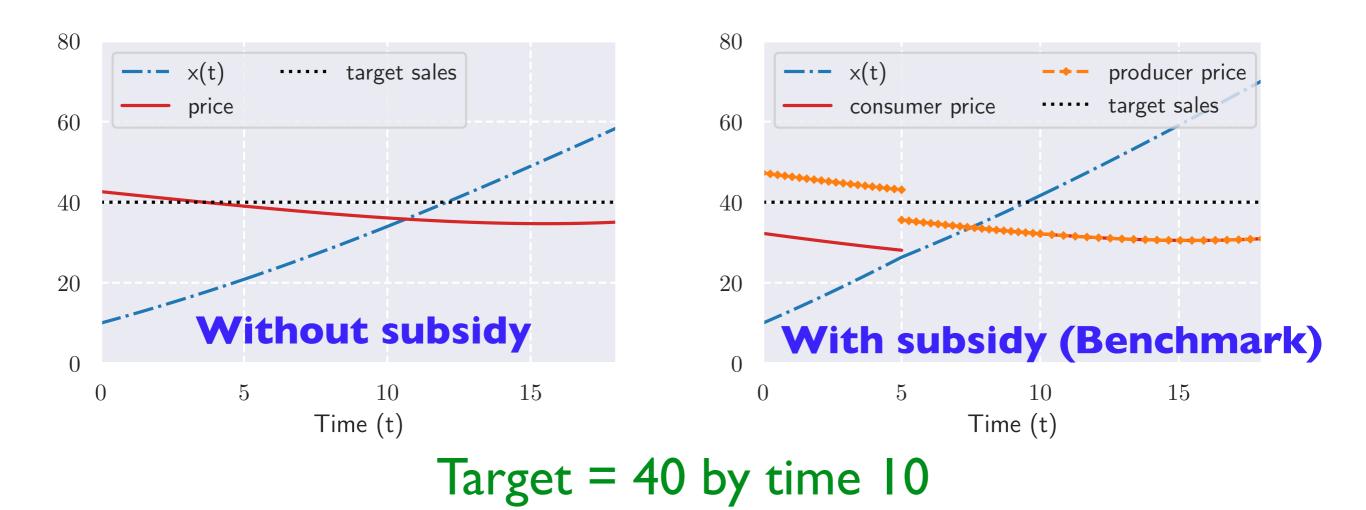




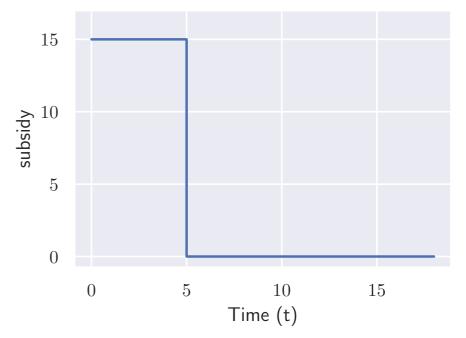
Target = 40 by time 10



- With subsidy
  - Firm's profit increase by 56%
  - Low price
  - High adoption
  - Target is met
  - Lower pollution



- With subsidy
  - Firm's profit increase by 56%
  - Low price
  - High adoption
  - Target is met
  - Lower pollution



## Impact of target value

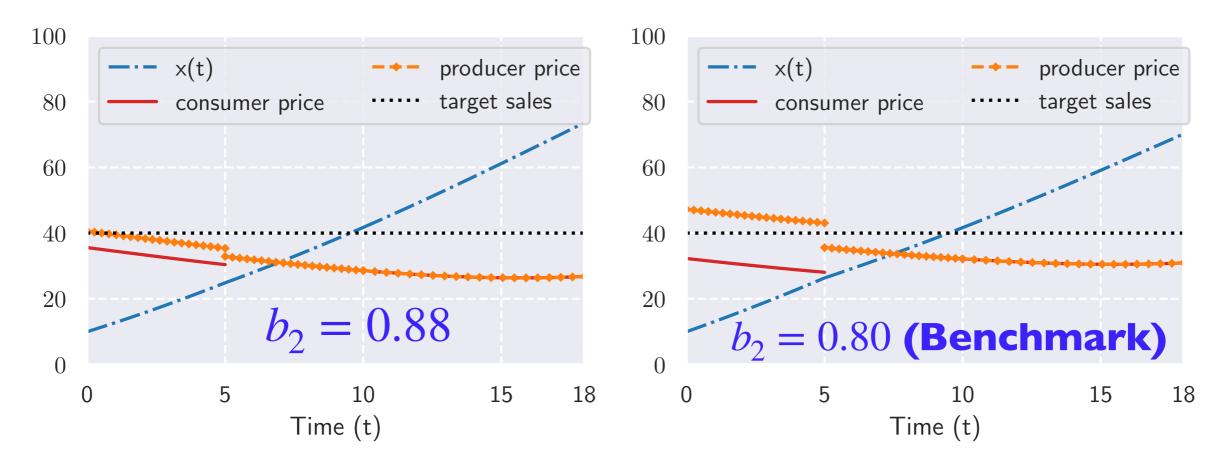


## Impact of target value



- Lower price
- Higher adoption
- Increase in 300% in the cost to the taxpayers

## Impact of learning speed



## Impact of learning speed



- Lower price and lower subsidy
- Subsidy budget is reduced by almost 3 times

### Impact of word of mouth

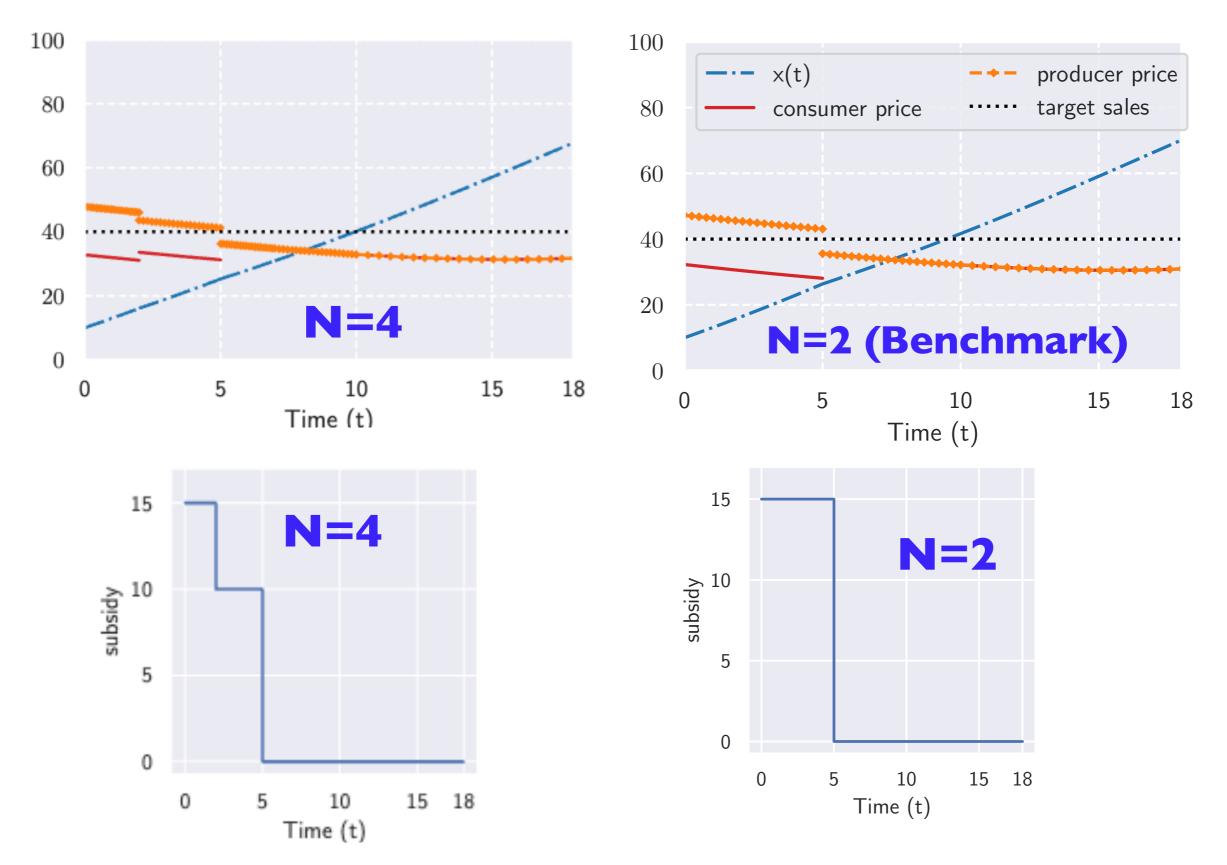


## Impact of word of mouth



- No significant difference in price, subsidy and adoption of EVs
- High market potential reduces the incentive to lower prices

## Impact of number of decision dates



## Take-away messages

- Compute feedback equilibria in Stackelberg impulse differential games
- Extensions
  - Hyperbolic discounting (Solve PDE)
  - Real-world case study
  - Stochastic case
  - Timing the interventions
  - Solve Quasivariational inequality



Link to paper

utsav.sadana@umontreal.ca

## Take-away messages

- Compute feedback equilibria in Stackelberg impulse differential games
- Extensions
  - Hyperbolic discounting (Solve PDE)
  - Real-world case study
  - Stochastic case
  - Timing the interventions
  - Solve Quasivariational inequality



Link to paper

utsav.sadana@umontreal.ca