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Outline

@ What is an entropic risk measure?
@ Estimated risk vs true risk
@ Optimistic bias in estimating and optimizing entropic risk
e Estimation: Proposed algorithms to mitigate the underestimation of risk

e Optimization under distributional ambiguity: Use the algorithms for calibrating
hyperparameters of the ambiguity set for risk minimization

o Case study of a flood insurance pricing problem
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What is an Entropic Risk Measure?
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Entropic Risk Measure

@ Loss is uncertain in many real-world problems
@ A risk measure maps the uncertain loss to a real number

@ For example, a widely used convex law-invariant risk measure is the entropic risk

élog(Ep(eM(g))) if a >0,

peltl8)) = {Epw(s)l fo=0

0(€) is the loss associated with & ~ P and « is the risk aversion parameter
@ Entropic risk is the certainty equivalent of the exponential utility
e For normal loss distribution £(&) ~ N (,02): pp(£(€)) = 1+ 2ao?
@ Would you take a fixed loss of x or a gamble with risk y1 + Sao??
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Entropic Risk Measure

@ Exponential utility model - Agents’ preferences exhibit constant absolute risk
aversion (CARA)
o Widespread applications in

e Risk-sensitive control® (entropic risk measure is time-consistent)
e Portfolio selection?

e Fair and robust decision making3

o Catastrophe insurance pricing*

@ Diverse communities such as control theory, operations research, economics, and
machine learning

'Howard, R. A., & Matheson, J. E. (1972).Risk-sensitive Markov decision processes. Management
science, 18(7), 356-369.

Chen, L., & Sim, M. (2024).Robust CARA optimization [Forthcoming]. Operations Research.

3Li, T., Beirami, A., Sanjabi, M., & Smith, V. (2023).0n Tilted Losses in Machine Learning: Theory
and Applications. Journal of Machine Learning Research, 24(142), 1-79.

“Bernard, C., Liu, F., & Vanduffel, S. (2020).Optimal insurance in the presence of multiple
policyholders. Journal of Economic Behavior & Organization, 180, 638-656.
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Literature Review

Three intersecting themes:
@ Correcting bias in risk estimators
@ Addressing the optimistic bias of SAA (sample average approximation) policy

@ Pricing insurance for correlated losses
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Correcting Bias in Risk Estimators

e Quantitative risk measurement often relies on precise estimation of risk measures®
Non-parametric bootstrap for correcting bias in Value at Risk (VaR) estimates®
7

°
e Distributionally robust optimization (DRO) to construct worst-case tail risk bounds
e Extreme value theory (EVT) for unbiased CVaR estimation®

°

How to mitigate bias in entropic risk estimation with finite samples?

®McNeil, A. J., Frey, R., & Embrechts, P. (2005). Quantitative Risk Management: Concepts,
Techniques and Tools. Princeton University Press.

®Kim, J. H. T. (2010).Bias correction for estimated distortion risk measure using the bootstrap.
Insurance: Mathematics and Economics, 47(2), 198-205.

"Lam, H., & Mottet, C. (2017).Tail analysis without parametric models: A worst-case perspective.
Operations Research, 65(6), 1696-1711.

8Troop, D., Godin, F., & Yu, J. Y. (2021). Bias-corrected peaks-over-threshold estimation of the
CVaR. In C. de Campos & M. H. Maathuis (Eds.), Uncertainty in artificial intelligence (pp. 1809-1818,

Vol. 161). PMLR.
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Optimistic Bias in the SAA Policy

e DRO, hold-out, and K-fold cross-validation (CV) address the Optimizer's Curse via
hyperparameter tuning®

@ Estimators of SAA policy performance for Gaussian data in linear optimization
problems!®

@ The Optimizer’s Information Criterion (OIC) corrects SAA policy bias
asymptotically using the loss's influence function!!

e Can DRO mitigate the optimistic bias in entropic risk minimization?

9Smith, J. E., & Winkler, R. L. (2006).The Optimizer's Curse: Skepticism and Postdecision Surprise
in Decision Analysis. Management Science, 52(3), 311-322.

®Gupta, V., Huang, M., & Rusmevichientong, P. (2024).Debiasing in-sample policy performance for
small-data, large-scale optimization. Operations Research, 72(2), 848-870.

ulyengar, G., Lam, H., & Wang, T. (2023).Optimizer’s information criterion: Dissecting and

correcting bias in data-driven optimization. arXiv preprint arXiv:2306.10081.
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Insurance Pricing

@ Seminal paper by Kenneth Arrow in insurance contract design!?
e Expected utility-maximizing policyholder will choose full coverage above a deductible

@ Several models for the risk-averse insurer and policyholder!3
@ Typical assumption: known loss distribution

@ How to model a risk-averse insurance pricing problem under distributional
ambiguity?

2Arrow, K. J. (1963).Uncertainty and the welfare economics of medical care. American Economic
Review, 53(5), 941-973.
3Bernard, C., Liu, F., & Vanduffel, S. (2020).Optimal insurance in the presence of multiple

policyholders. Journal of Economic Behavior & Organization, 180, 638-656.
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Optimistic Bias in Entropic Risk Estimation
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Estimation of Entropic Risk

@ Loss distribution is unknown in real-world applications
o Given: historical data D = {él,éz, e ,éN}

R YR
Pn(€) == N;%(E)
where ¢ is a Dirac distribution at point &.

@ The empirical entropic risk estimator is given by:

1 1 & e
. — il al(&))
pe, (U(€)) =~ log (/\/ ;:16
e Empirical entropic risk estimator underestimates the true risk (Jensen's inequality)

E |pp, (€(€))] < pe(€(€))
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Risk Underestimated in Insurance Pricing

@ Minimum premium o Truerisk [ N=50 IN=100 [ N=200 B N=500
to insure against the
loss £(&) := & is given
by the entropic risk

3.51

0.0 05 1.0 15 2.0
risk aversion ()

@ Gamma distributed
loss function
¢ ~T1(10,0.24)

™ = pp(§)
= é log ((1 — 0.24a)_10)

Statistics of the empirical risk estimator
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Bias Correction: Mean-Unbiased Estimator

Bias: 6" = pp(€(€)) — pp,, (£(E))
Find 6(Dy) such that E[§*¢] = E[6(Dy)]
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Bias Correction: Mean-Unbiased Estimator
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Non-parametric bootstrap estimator

1 Py (N=100)
— N(1,4)

Frequency
—
o

Frequency

e Calculate bias by resampling from (Efron, 1979)
on(B) = pp, (0(€)) — Elps,, , (£(8))]

° pes = pp, (£(8)) + on(B)
14/ 44



Bias - True vs Bootstrap
@ Suppose £(§) ~ N(1,4) and a =2

@ Non-parametric bootstrap underestimates the true correction in finite samples

@ Can we further mitigate the underestimation issue?

5 097
5
@
8
_8 061 —o- True
o)
5
8 = BS
@
§ 0.3
n
| \
t ? ‘ L2 1 r—i—\
0.01
100 500 1000 10000
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Bias Mitigation - Approximately Median-Unbiased Estimator
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Proposed Parametric Bootstrap Approach

3“: 0 Py (N=500)
§° — Qu = GMM(0)
o0
4
L 2

-4 -2 ] 2 4 /(€>

G~Qn G~Qn (s~ Qn

80

Frequency
Frequency
Frequency

e Step 1: Fit Qp - Gaussian Mixture Model with parameters 6 = (7, pu, o)
o Step 2: Sample (; ~ Qy and compute pg; (¢)} for each sample
N,N

2
e Step 3: Compute pg,(¢) = élog ( J-Y:1 mjexp(apu; + %af))

e Step 4: Compute dy(Qy) = max(median[{pg, (¢) — par, () B 1,0)
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Asymptotic consistency

@ The bias correction is given by:

n(Qn) = max(median{{p3, () — pz; ()}E.4],0)

@ The parametric bootstrap estimator is given by:
pes-u = pp, (€(£)) + on(Qn)

Theorem 1

Under the assumptions

@ the tails of {(§) are exponentially bounded

@ the tails of Qu are exponentially bounded
the estimator pgs-y is strongly asymptotically consistent.
Which model (M) should we use to fit the GMM Qp?
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Fitting Qpu
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Parametric bootstrap - Maximum Likelihood estimation
@ Suppose £(§) ~ N(1,4) and a =2

@ BS-MLE - Fit a normal distribution to the data and then bootstrap.

@ What if the model is misspecified?

2.01

—~ N
=} 3}

Statistics of bias correction

<
3

0.0

=

ﬁ N
e == o
100 500 1000 10000

N

—eTrue

& BS
B BS-MLE
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Inaccurate estimation

@ Suppose £ ~ GMM(7, u, ), # =[0.70.3], o =[0.51], and o = [2 1].

@ Slow convergence of the Expectation-Maximization algorithm for overlapping

components (Xu & Jordan, 1996)

2

-

o

1.25
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k=]
5 1.004
o
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© (.75
12}
.o
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5 0.50- I
123
L
-2 0.25
ko
(2]
0.004
100

1000

10000 100000 500000

N

-o-True

&3 BS-MLE

Fitting Qu via MLE does not take into account the effect of estimation errors on the bias
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Inaccurate estimation

@ Suppose £ ~ GMM(7, u, ), # =[0.70.3], o =[0.51], and o = [2 1].

@ Slow convergence of the Expectation-Maximization algorithm for overlapping

components (Xu & Jordan, 1996)

1.25

Statistics of bias correction
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Fitting Qu via MLE does not take into account the effect of estimation errors on the bias
Recall, we aim to mimic the true bias = Use “bias-aware” distribution matching
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Qu using Entropic Risk Matching

Mimic the bias in the samples
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Qp using Entropic Risk Matching

Mimic the bias in the samples
Divide samples into B = v/N bins

>
2 50 ~
g P
g
e 22 0 2 4
4¢3
P1
-2 0 2 4
Bin 1
P2 [
-2 0 2 4
Bin 2 .
PB
-2 0 2 1
Bin B
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Qp using Entropic Risk Matching

Mimic the bias in the samples
Divide samples into B = v/N bins
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Qp using Entropic Risk Matching

Mimic the bias in the samples
Divide samples into B = v/N bins

o
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Frequency
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o
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Qp using Entropic Risk Matching

Mimic the bias in the samples
Divide samples into B = v/N bins

>
g 50 . 1.0
e P 0s
5
LlL_ 0 E 0.6
an 2 0 2 1 S
0.4
Z(f) FRDN
Pl 0.2 —— Fy,
-2 0 2 4 0Il 75 2.00 2.25 2.50 2.75 3.00
Bin 1 Entropic Risk
P2 [
-2 0 2 4
Bin 2 .

Rpy ={p1,.--,p8B}
2 4 Re:{p€7""p03}

PB

-2
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Gradient Descent algorithm

e Find 6

1/2
mein w? (PRDN,PRQ (/ ‘FRDN FRO( )]2dq)
@ Optimal 0 is obtained using gradient descent
011 = 0; — YV, W2 (@’RDN,]@’Rgt) ,

@ Compute gradient by backpropagation

e Making sampling differentiable: For the GMM's discrete component, use
Gumbel-max with the Straight-through estimator (STE).

@ This is a computationally expensive procedure. Alternative?
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Qu using Extreme Value Theory

Idea: Entropic risk is sensitive to extreme values. Fit a Qn component to model the
upper tail of P

Theorem 2 (Fisher—Tippett—Gnedenko Theorem)

Let ¢ follow a distribution with cdf F(-). The distribution of M, = max{(1, (2, - ,(n}
converges to a non-degenerate distribution G:

Mn_ n q
lim P (ab < x> = nILn;o F(anx + by)" — G(x),

n—o0

where a, and b, are normalizing constants

= Fit Cbl’xg—distribution of maxima of N i.i.d samples from N (u, o)—to the
distribution of maxima constructed from data
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Qp using Extreme Value Theory

Density
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Qp using Extreme Value Theory

Divide samples into B bins

Density
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Qp using Extreme Value Theory

Divide samples into B bins

Density

Bin 1 Cinax
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Qp using Extreme Value Theory

Divide samples into B bins

Density

Bin1

Cmax

3 4
Block maxima
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Qp using Extreme Value Theory

Divide samples into B bins Fit cbl/l’(7 to the maxima
(analytic).

Density

Bin 1 Cinax

3 4
Block maxima
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Qp using Extreme Value Theory

Divide samples into B bins

Density

Fit CDI’XU to the maxima
(analytic).

3 4
Block maxima
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Qp using Extreme Value Theory

GMM =
50%#((5) + 50%N (1, o)

Divide samples into B bins

Bin 1 Cinax

—4

Fit CDI’XU to the maxima
(analytic).

3 4
Block maxima
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Effect of Distribution Fitting
Recall £ ~ GMM(m, u, o), # =[0.7 0.3], p = [0.51], and o = [2 1].

—o-True ®i BS-MLE m8BS-EVT &3 BS-Match

']

©

o
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@

o
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7] 0.01 —= —— ——

100 1000 10000 100000 500000
N

Proposed approaches typically overestimate bias, but stay close to true bias
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Comparing With Other Methods

X
0
.g_ 5 o True
2 .
]
s & BS-EVT
g O ! % BS-Match
*g & BS
L n e
s 5 & MLE
0 - g MoM
o
. s
& -10 *
1 2 3
Project

@ Project 1, 2, 3 have respective losses 0.4£, 0.6¢ and 0.8¢ with £ ~ GMM:
pe = —18.6 and o = 2.9
@ Most methods underestimate risk while proposed methods are close to true risk
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Optimization
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Distributionally robust optimization (DRO)

@ Entropic risk minimization with distribution P

pr = minpp(£(2,€)) = ébg (Ep[e™=4))

@ Sample average approximation:

~ mi 1 al(z€)
psu = min ps, (((2.€)) = log (Ez [¢*9])

Often results in the Optimizer's Curse or overfitting

@ Distributionally robust optimization - protection against distributional ambiguity

1
o =iy s Liog (Eoferte9)).
2€Z QeB. (Py) @

where B,(Py) is the ambiguity set of all distributions at a “distance” ¢ from Py
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Ambiguity Set
o KL-divergence ambiguity set is ill-suited
o KL(Q,Py) < € - cannot reposition scenarios
o KL(Py,Q) < ¢ - worst case loss is co
@ p-Wasserstein ambiguity set - unbounded worst-case loss if p < oo
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Type-oo Wasserstein Ambiguity Set

N
B.(Py) := {@ EM(Z) |3 e=st & —Eillo <, Vic[N],Q= Ibzfsg,} :
i—1
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Distributionally robust optimization

Theorem 3

For a linear loss function, DRO problem becomes a regularized exponential cone
program:

. 1I 1 i azTé + |2
min=log [ = ) e i ellz|.
¢ N i=1

zeZ (v

@ For piecewise concave loss function in € € =, DRO problem can be reformulated as
a convex optimization problem using Fenchel duality

@ We solve the exponential cone program using the MOSEK solver

@ c is typically chosen by K-fold cross validation

Theorem 4
poro — p* and psga — p* in probability at the rate O(1/+/N)
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Underestimation of the Risk of In-Sample Decisions

Proposition 5

The entropic risk estimator based on the K-fold CV underestimates the entropic risk of
the policy constructed using N(1 — +) data points.

To calibrate ¢, we will use the proposed bias-mitigation approaches.
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Case Study
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Insurance Pricing
Insurance contract for household h:

]

household 1
loss &1
risk aversion o

coverage (zp,) and premium (7p)
Insurer
risk aversion ap

H

IEx R vy

household h household M
loss &, loss Em
risk aversion «, risk aversion ay
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Insurance Pricing

Insurance contract for household h: coverage (zj,) and premium (7p)
Insurer
risk aversion ap

Ll

household 1 household h household M
loss &1 loss & loss &
risk aversion o risk aversion ay, risk aversion ayy
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Insurance Pricing

Insurance contract for household h: coverage (zj,) and premium (7p)
Insurer
risk aversion ap

Ll

household 1 household h household M
loss &1 loss & loss &
risk aversion o risk aversion ay, risk aversion ayy

P%:_N(Wh +(1—zp)ép) < pi:N(fh) vV he [M]

—————
risk when insured risk when uninsured
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Insurance Pricing

Insurance contract for household h: coverage (zj,) and premium (7p)

Insurer
M M

risk aversion
S aver g o PEZ(Zzhfh - ZM)

h=1 h=1

insurer's risk

(zm, 7m)

Ll

household 1 household h household M
loss &1 loss & loss &
risk aversion o risk aversion ay, risk aversion ayy

P%:_N(Wh +(1—zp)ép) < pi:N(fh) vV he [M]

—————
risk when insured risk when uninsured
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Insurance Pricing
Insurance contract for household h: coverage (zj,) and premium (7p)
Insurer

risk aversion v (Z 26 — 3 7Th>

h=1 h=1

insurer's risk

(zm, 7m)

Ll

household 1 household h household
loss &1 loss & loss &
risk aversion o risk aversion ay, risk aversion ayy
0.25
P, v p
a pi! (mh+ (1 =2)8) < pf? (&) Vhe[M]
0.00 p . —_———
o 10 risk when insured risk when uninsured
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Insurance Pricing
Sample Average Approximation

M M
psan = min pi? (Z Znén— Y 7Th>
h=1 h=1

risk of insurer
st eRM zelo, 1]V

Pg:N (mh 4+ (1 = 2)&p) < pg:w (¢h)  Vhe[M]

———
risk when insured risk when uninsured
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Insurance Pricing
Sample Average Approximation

M M
psan = min pi? (Z Znén— Y 7Th>
h=1 h=1

risk of insurer
st eRM zelo, 1]V

Pg:N (mh 4+ (1 = 2)&p) < pg:w (¢h)  Vhe[M]

———
risk when insured risk when uninsured

Distributionally Robust Optimization

M M
PpRo = MiN sup 0%0 (Z ZpSh — Z 7Th>
QeBe(Fw) h=1 h=1
st. meRY ze[0,1)M
P (mh+ (L= 20)8n) < pg! (€n) Vhe[M]
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Calibrating ¢

A j

Estimate of out-of-sample risk

0.0 0.6 1.3 1.9 25 3.2 3.8 4.4 51 5.7
Radius
Bootstrapping applied on Cross Validation data
@ Vanilla CV systematically chooses smaller ¢

@ Proposed methods choose similar ¢ with oracle

Method

E3 BS-EVT
E3 BS-Match
B CV

E3 Oracle
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Calibrating ¢

6.
41 ¢ % BS-EVT
% &1 BS-Match
5l &1 Oracle
B CV
0.

500 1000 5000 10000
N

Bootstrapping applied on Cross Validation data
@ Vanilla CV systematically chooses smaller €

@ Proposed method chooses similar € with oracle
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Effect of Sample Size N

2.5
0.0 &l 2
S~—

Out-of-sample risk

-7.5

500 1000 5000 10000
N

1000

As N increases:

@ both insurer and households are more capable of estimating their risk

o o Wik %#ﬁ

N

5000

@ insurer extracts higher premiums for the same coverage level

10000

® BS-EVT
& BS-Match
& Oracle

s CV

= SAA
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Effect of Correlation
s BS-EVT = BS-Match = Oracle #: CV 2 SAA

+$£ﬁ +¢$é e

-5

-10

Out-of-sample entropic risk

0 0.5 0.75 1

As r increases
@ extreme loss events are more likely to occur simultaneously

@ insurer's risk exposure increases
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Effect of Correlation

a=29 =27 =25 a=23 a=2.1
08 Correlation (r)
% 06 0.61 0.60 0.57 0.55 . )
3 04 o5
3 0.25
8 o2 020016 019 15 023 0.17 9 14 02017 10 0214 45 W 075
L T [ e s §
0.0
(a) BS-Match.
a=2.1
" 0.69 Correlation (r)
0
g 2 0.41 S ke 0.42 0.38 [os
2 0 32 o 27 0.30
& 0.23 o075
(&) 0 14 . 0.06 R
—

(b) SAA.

@ rincreases = risk pooling diminishes = insurer reduces coverage

@ SAA offers higher coverage due to underestimation of risk
41/44



Key Takeaways
Estimating risk using sample averages can make us highly optimistic!
@ Bias mitigation can partially address this issue
@ Future research could aim to reduce the variance of the SAA estimator
DRO techniques can alleviate optimistic bias in decision-making

@ still requires debiasing techniques for calibration
o effective calibration techniques need to be cheap
e number of folds in K-Fold CV
e computational complexity of bias correction

utsav.sadana@umontreal.ca
https://utsav19.github.io/
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