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® Loss is uncertain
® Risk measure maps loss to a real number
® Entropic risk measure accounts for

- mean

- variance

- Higher moments

e Estimation of entropic risk:
- True risk - Use known loss distribution

- VVe use data to construct risk estimator



Tails and Bias

® Loss is uncertain
e Risk measure maps loss to a real number True risk
® Entropic risk measure accounts for

- mean

- variance

- Higher moments

e Estimation of entropic risk:
- True risk - Use known loss distribution

- VVe use data to construct risk estimator



Tails and Bias

® | oss is uncertain

® Risk measure maps loss to a real humber True risk

® Entropic risk measure accounts for

- mean
= Variance
- Higsher moments
8 Estimated
risk

e Estimation of entropic risk:
- True risk - Use known loss distribution

- VVe use data to construct risk estimator



Tails and Bias

® | oss is uncertain

e Risk measure maps loss to a real number True risk
® Entropic risk measure accounts for
- mean Bias (0)
- variance
- Higher moments Ccrimated
risk

e Estimation of entropic risk:
- True risk - Use known loss distribution

- VVe use data to construct risk estimator



Tails and Bias

® | oss is uncertain

e Risk measure maps loss to a real number True risk
® Entropic risk measure accounts for
- mean Bias (0)
- variance
- Higher moments Ccrimated
risk

e Estimation of entropic risk:

- Jrue risk - Use known loss distribution ,
Oracle’s lever

- VVe use data to construct risk estimator



Tails and Bias correction

True risk

Estimated
risk

Oracle’s lever



Tails and Bias correction

True risk — e Estimated
risk

Oracle’s lever



Tails and bias mitigation

True risk

Estimated
risk

Our

Lever



Tails and bias mitigation

Estimated
True risk | : risk

Our
Lever



Beyond risk neutrality



Beyond risk neutrality

Y



Beyond risk neutrality

003 | oss

Gamble




Beyond risk neutrality

003 | oss

Gamble

?

Fixed loss

/5%




Beyond risk neutrality

>03 Loss

Indifference between the two options
M Risk neutral 008

] Experiments
Gamble

?

(] Entropic risk measure

Fixed loss

/5%




Beyond risk neutrality

>03 Loss

Indifference between the two options
M Risk neutral 008

Q Experiments
Gamble

?

(] Entropic risk measure

Fixed loss

/5%




Beyond risk neutrality

>03 Loss

Indifference between the two options
M Risk neutral 008

Q Experiments
Gamble

?

(d Entropic risk measure

Fixed loss

/5%




Entropic risk measure

Uncertainty Loss Entropic risk

1

®  is the decision maker’s risk aversion
® [P is not known




Entropic risk measure

Data ()

Empirical entropic risk

L oss

£E), CE), ... C(Ey) P (£(®) = Llog (4 XV exp(at(€)))

Empirical entropic risk underestimates true entropic risk:

Vv Jensen’s inequality: E[empirical risk] < True risk

v’ Optimized certainty equivalent (OCE) measure

1 1
pp(£(5)) = int @(t + —exp(a(£(§) — 1)) — _>

04 04

\ — replace with P, (optimizer’s curse)



o Loss &~ 17(10,0.24)

e Insurer covers the risk:

Premium = — log ( Cp [€Xp(05bﬂ(§))] )

04

e Sample mean — true mean slowly:

Gaussian £ = exp(a¢) is log-normal

Ex |: pricing insurance
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Influence function (IF)

Influence function (IF) - impact of data removal on risk
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Bias mitigation with bootstrapping

Efficiently computable risk under C)
Gaussian mixture models are universal function approximators

po(8) = (1/a)log (Zy I, exp(a,uy + 52/2)>

:
*Fit a distribution: @ ‘to the loss scenarios

* Draw N samples from (), compute risk p, and repeat
M times

X Bias: 5,(Q) = median[{pg({) — p, }i,]

Bias:

5 = Elpp(0) — ps (O]
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Statistics of bias correction

Model |: Fit using maximum likelihood
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Bias mitigation using Bias-aware
bootstrapping
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*. Fit distribution () whose samples have the same bias
o as the bias in the data .7

\

Bias mitigation using Bias-aware
bootstrapping
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® Loss scenarios {;, (5, **+, C, iid

° Mn — maX{Zjl,Cz, "t Z:n}

Fisher—Tippett—Gnedenko theorem: :
As n — o0, distribution of M, converges to either VWeibull, Frechet or Gumbel |
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® Loss scenarios {;, (5, **+, C, iid

° Mn — maX{Zjl,Cz, "t Z:n}

Our approach:
® cdf normal rv - ©(u, o)
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Fisher—Tippett—Gnedenko theorem: :
As n — o0, distribution of M, converges to either VWeibull, Frechet or Gumbel |
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® Loss scenarios {;, (5, **+, C, iid

° Mn — maX{Zjl,Cz, "t Z:n}

Our approach:

® cdf normal rv - ©(u, o)
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Model 3: Extreme value theory (BS-Match)

- — — Fitted ®(x)
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Fisher—Tippett—Gnedenko theorem: :
As n — o0, distribution of M, converges to either VWeibull, Frechet or Gumbel |
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Model 3: Extreme value theory (BS-Match)

" EEEE N | Partition into Loss scenarios
1 2 B Bbins Cl,gz,...,CN

Compute max in

each bin
Our approach: — | ®(u,0) | (Tails match)
® cdf normal rv - ©(u, o) (1, 0) I
50%

® Fit ®"(u, 0) to my,m,, ---, my

() is a 2-component >0% | Dirac
distribution
GMM with mean

N
zizl Gi/ N




Statistics of bias correction
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Ex 2: Bias mitigation

o True ®8BS-MLE = BS-EVT = BS-Match

| 3
\\
‘ \T\O‘ 3
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Ex: Compute entropic risk

®* E~ GMM(m,u,0), 7 = [0.7 0.3],

u=[051],6=1[21]

® BS-MLE - Fit () using MLE

Underestimation persists

® BS-EVT - Fit () by matching
tails

® BS-Match - Fit ) by entropic
risk matching
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Ex3: Compare with other estimators
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Going from estimation to optimization
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Distributionally robust optimization

*Loss depends onz € Z:

p* = min pp(£(z,§))
IEF

* Sample average approximation

Psaa = minpp (£(z,6))
ZEZL

* DRO accounts for distributional ambiguity:

Ppro = Min  sup pa(£(z,€))
2€ZL Qe ,(€)

20
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Distributionally robust optimization

9 KL divergence and Type-p Wasserstein (p < 00): unbounded worst-case loss

9 Type co—Wasserstein: bounded loss

| Theorem: pg,, — p*, ppro — p* in probability at rate 6(1//N) |
.- SAA DRO P 4 ‘

21
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Regularized exponential cone program

Theorem: With a linear loss function £(z, ) = z'& DRO with type-oo
Wasserstein ambiguity set reduces to:

1
min — log ( =y [exp(aZT’g')] >+€HZ||*
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Regularized exponential cone program

Theorem: With a linear loss function £(z, ) = z'& DRO with type-oo
Wasserstein ambiguity set reduces to:

1
min — log ( =y lexp(az 'é)| >+€HZ||* |
AN 0

* More general loss functions - refer to our paper

* How to choose the radius €?
* Validation data - underestimates the true risk
- suboptimal radius

- Bias correction using bootstrapping
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® Insurer offers coverage z,& at premium 7,

® a,:homeowner’s risk preference

® o insurer’s risk preference




Distributionally robust insurance pricing

® Insurer offers coverage z,& at premium 7,

® a,:homeowner’s risk preference

® o insurer’s risk preference

sup - pp (z'€—1"7) + €lz]|«

Demand response model: Household accept/reject the
contract based on their estimate of empirical entropic risk




Reformulation as exponential cone

® A coverage of 7;,¢ is offered at premium 7

® ;,:homeowner’s risk preference

® o insurer’s risk preference

a A

min p% (z7&-17x) + €llzll-
N

st. 7€ RY ze[0,1M
P (”h + (1 - Zh)é:h> <pl (5;1) Vh

|]j)h,N |]j)h,N

\_ J

Data for numerical experiments:

Loss scenarios are generated from Gaussian copula with I'(k;, 4,) marginals



Out-of-sample risk

Out-of-sample risk and radius - vary N

<1 BS-EVT =1 BS-Match = Oracle = CV &8 SAA

<1 BS-EVT =1 BS-Match &= Oracle = CV
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‘ ! v o
) \ \ ). . \ . \ . \ . \
500 1000 5000 10000 500 1000 5000 10000
N N

Risk decreases as training samples increase

Our models choose higher radius while traditional CV chooses lower radius
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Premium per unit coverage - vary N

<1 BS-EVT ®= BS-Match = Oracle 1 CV g SAA
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/\Q Clollo
$1.£ 250 oo o
2 0\ ‘ T g
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O
000 52
]
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Households pay higher premiums as their estimates of risk improve with N
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Out-of-sample risk and radius - vary correlation

<1 BS-EVT & BS-Match = Oracle & CV

<1 BS-EVT == BS-Match &= Oracle = CV = SAA

6-
5 5 ‘
®) O' O 4' e 102
= Ad o |_<‘>_|_$_ Rahd O
g 5 ##5%_0— %E$%E # W 00'<‘>' ok o’o
o
% ‘ ‘ ‘ ‘ 2- ‘ o o ©
P -101 PR ™
O
L - ‘ > ‘ |
O -15- 0- | |
0 0.5 0.75 1' 0 0.5 0.75 :

r

High correlation: extreme loss events more likely to occur simultaneously, increasing insurer’s
risk exposure
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Premium per unit coverage - vary correlation

=1 BS-EVT == BS-Maich &5 Oracle =1 CV @8 SAA

3.0-
~ 2.9
e _<>_-<>-—<>—_°_ 0 O
2.0- T+ \
0 0.5 0.75 1.0

r

High correlation: benefits of risk pooling diminish, reduce coverage significantly to reduce risk
exposure
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Estimate of out-of-sample risk

Why our models identify better radius?
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Take-away message

* Entropic risk estimation and optimization

* Two practical approaches to reduce optimistic bias

e Future research:
 Extend to CVaR

* Solve exponential cones faster

Link to paper
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