Utsav Sadana Department of Computer Science and Operations Research Université m de Montréal

INFORMS Computing Society conference 15th March, 2025 (joint work with Erick Delage and Angelos Georghiou)

What's hidden in the tails? Revealing and reducing optimistic bias in entropic risk estimation and optimization

What's hidden in the tails?

- Loss is uncertain
- Risk measure maps loss to a real number
- Entropic risk measure accounts for
 - mean
 - variance
 - Higher moments
- Estimation of entropic risk:
 - True risk Use known loss distribution
 - We use data to construct risk estimator

- Loss is uncertain
- Risk measure maps loss to a real number
- Entropic risk measure accounts for
 - mean
 - variance
 - Higher moments
- Estimation of entropic risk:
 - True risk Use known loss distribution
 - We use data to construct risk estimator

True risk

- Loss is uncertain
- Risk measure maps loss to a real number
- Entropic risk measure accounts for
 - mean
 - variance
 - Higher moments
- Estimation of entropic risk:
 - True risk Use known loss distribution
 - We use data to construct risk estimator

True risk

Estimated risk

- Loss is uncertain
- Risk measure maps loss to a real number
- Entropic risk measure accounts for
 - mean
 - variance
 - Higher moments
- Estimation of entropic risk:
 - True risk Use known loss distribution
 - We use data to construct risk estimator

- Loss is uncertain
- Risk measure maps loss to a real number
- Entropic risk measure accounts for
 - mean
 - variance
 - Higher moments
- Estimation of entropic risk:
 - True risk Use known loss distribution
 - We use data to construct risk estimator

True risk

Tails and bias mitigation

True risk

Tails and bias mitigation

2

Indifference between the two options

- **M**isk neutral
- Entropic risk measure

Indifference between the two options

- **M**isk neutral
- Entropic risk measure

Indifference between the two options

- **M**isk neutral
- Entropic risk measure

Entropic risk measure

- α is the decision maker's risk aversion
- \mathbb{P} is not known

7

Entropic risk measure

Empirical entropic risk underestimates true entropic risk:

 \checkmark Jensen's inequality: $\mathbb{E}[\text{empirical risk}] < \text{True risk}$ \checkmark Optimized certainty equivalent (OCE) measure $\ell(\boldsymbol{\xi}) - t)) \alpha$ - replace with $\hat{\mathbb{P}}_N$ (optimizer's curse)

$$\rho_{\mathbb{P}}(\ell(\boldsymbol{\xi})) = \inf_{t} \mathbb{E}\left(t + \frac{1}{\alpha} \exp(\alpha(t + \frac{1}{\alpha}))\right)$$

Empirical entropic risk

$$\rho_{\hat{\mathbb{P}}_N}(\ell(\boldsymbol{\xi})) := \frac{1}{\alpha} \log\left(\frac{1}{N} \sum_{i=1}^N \exp(\alpha \ell(\boldsymbol{\xi}_i))\right)$$

Ex I: pricing insurance

- Loss $\xi \sim \Gamma(10, 0.24)$
- **Insurer covers the risk:**

Premium =
$$\frac{1}{\alpha} \log \left(\mathbb{E}_{\mathbb{P}} \left[\exp(\alpha \ell(\boldsymbol{\xi})) \right] \right)$$

• Sample mean \rightarrow true mean slowly:

Gaussian $\xi \implies \exp(\alpha\xi)$ is log-normal

Influence function (IF)

Influence function (IF) - impact of data removal on risk

Bootstrap

- Bias: $\delta_N(\mathbb{Q}) = \text{median}[\{\rho_{\mathbb{Q}}(\zeta) \rho_n\}_{i=1}^M]$

• Bias: $\delta_N(\mathbb{Q}) = \text{median}[\{\rho_{\mathbb{Q}}(\zeta) - \rho_n\}_{i=1}^M]$

- Bias: $\delta_N(\mathbb{Q}) = \text{median}[\{\rho_{\mathbb{Q}}(\zeta) \rho_n\}_{i=1}^M]$

- Bias: $\delta_N(\mathbb{Q}) = \text{median}[\{\rho_{\mathbb{Q}}(\zeta) \rho_n\}_{i=1}^M]$

Efficiently computable risk under Q Gaussian mixture models are universal function approximators

$$\rho_{\mathbb{Q}}(\zeta) = (1/\alpha) \log\left(\sum_{y} \pi_{y} \exp(\alpha \mu_{y} + \alpha)\right)$$

•Fit a distribution Q to the loss scenarios

- Draw N samples from Q, compute risk ρ_n and repeat M times
- Bias: $\delta_N(\mathbb{Q}) = \text{median}[\{\rho_{\mathbb{Q}}(\zeta) \rho_n\}_{i=1}^M]$

Theorem: Under some assumptions on tails of ζ : $\rho_{\hat{\mathbb{P}}_N}(\zeta) + \delta_N(\mathbb{Q})$ almost surely converges to true entropic risk

Model I: Fit using maximum likelihood (BS-MLE)

BS-MLE

- True

- Ex: Compute entropic risk
- $\xi \sim \text{GMM}(\pi, \mu, \sigma), \pi = [0.7 \ 0.3],$

 $\mu = [0.5 \ 1], \sigma = [2 \ 1]$

- **BS-MLE Fit** Qusing **MLE**
- **Underestimation persists**

12
Model I: Fit using maximum likelihood (BS-MLE)

BS-MLE

- True

- Ex: Compute entropic risk
- $\xi \sim \text{GMM}(\pi, \mu, \sigma), \pi = [0.7 \ 0.3],$

 $\mu = [0.5 \ 1], \sigma = [2 \ 1]$

- **BS-MLE Fit** Qusing **MLE**
- **Underestimation persists**

Bias mitigation using Bias-aware bootstrapping

Bias mitigation using Bias-aware bootstrapping

Wish:

Fit distribution \mathbb{Q} whose samples have the same bias \checkmark as the bias in the data

Idea: Match distributions of the entropic risk over the samples

Idea: Match distributions of the entropic risk over the samples

Loss scenarios $\zeta_1, \zeta_2, \ldots, \zeta_N$

Idea: Match distributions of the entropic risk over the samples

Partition into B bins of size *n* each

Loss scenarios $\zeta_1, \zeta_2, \ldots, \zeta_N$

Idea: Match distributions of the entropic risk over the samples

Partition into B bins of size *n* each

Loss scenarios $\zeta_1, \zeta_2, \ldots, \zeta_N$

Idea: Match distributions of the entropic risk over the samples

Partition into B bins of size *n* each

Loss scenarios $\zeta_1, \zeta_2, \ldots, \zeta_N$

Idea: Match distributions of the entropic risk over the samples

Partition into B bins of size *n* each

Loss scenarios $\zeta_1, \zeta_2, \ldots, \zeta_N$

Idea: Match distributions of the entropic risk over the samples

Partition into B bins of size *n* each

Loss scenarios $\zeta_1, \zeta_2, \ldots, \zeta_N$

Idea: Match distributions of the entropic risk over the samples

Partition into B bins of size *n* each

Loss scenarios $\zeta_1, \zeta_2, \ldots, \zeta_N$

Idea: Match distributions of the entropic risk over the samples

Idea: Match distributions of the entropic risk over the samples

Idea: Match distributions of the entropic risk over the samples

Idea: Match distributions of the entropic risk over the samples

Idea: Match distributions of the entropic risk over the samples

Idea: Match distributions of the entropic risk over the samples

Idea: Match distributions of the entropic risk over the samples

$$d^{\theta} > \epsilon$$

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \gamma \nabla_{\boldsymbol{\theta}} \mathcal{W}_2(\hat{\mathbb{P}}_N, \hat{\mathbb{Q}}_N^{\boldsymbol{\theta}})$$

Idea: Match distributions of the entropic risk over the samples

Idea: Match distributions of the entropic risk over the samples

• Loss scenarios $\zeta_1, \zeta_2, \dots, \zeta_n$ iid

- Loss scenarios $\zeta_1, \zeta_2, \dots, \zeta_n$ iid
- $M_n = \max\{\zeta_1, \zeta_2, \cdots, \zeta_n\}$

- Loss scenarios $\zeta_1, \zeta_2, \dots, \zeta_n$ iid
- $M_n = \max\{\zeta_1, \zeta_2, \cdots, \zeta_n\}$

- Loss scenarios $\zeta_1, \zeta_2, \dots, \zeta_n$ iid
- $M_n = \max{\{\zeta_1, \zeta_2, \dots, \zeta_n\}}$

- Loss scenarios $\zeta_1, \zeta_2, \dots, \zeta_n$ iid
- $M_n = \max\{\zeta_1, \zeta_2, \cdots, \zeta_n\}$

Our approach:

- cdf normal rv $\Phi(\mu, \sigma)$
- Fit $\Phi^n(\mu, \sigma)$ to m_1, m_2, \cdots, m_R

Fisher-Tippett-Gnedenko theorem: As $n \to \infty$, distribution of M_n converges to either Weibull, Fréchet or Gumbel -Fit using MLE

- Loss scenarios $\zeta_1, \zeta_2, \dots, \zeta_n$ iid
- $M_n = \max\{\zeta_1, \zeta_2, \cdots, \zeta_n\}$

Our approach:

- cdf normal rv $\Phi(\mu, \sigma)$
- Fit $\Phi^n(\mu, \sigma)$ to m_1, m_2, \cdots, m_R

Fisher-Tippett-Gnedenko theorem: As $n \to \infty$, distribution of M_n converges to either Weibull, Fréchet or Gumbel -Fit using MLE

Ex 2: Bias mitigation

- Ex: Compute entropic risk
- $\xi \sim \text{GMM}(\pi, \mu, \sigma), \pi = [0.7 \ 0.3],$ $\mu = [0.5 \ 1], \sigma = [2 \ 1]$
- BS-MLE Fit Q using MLE
- Underestimation persists
- **BS-EVT Fit** Q **by matching** tails
- **BS-Match Fit** Q **by entropic** risk matching

Ex3: Compare with other estimators

• $\xi \sim \text{GMM}(\pi, \mu, \Sigma)$ with 5 components

• across components -
$$\mu_{\xi} = -18.6 \sigma_{\xi} = 2.9$$

• Which project has lowest entropic risk based on 100 sets of 10000 samples with $\alpha = 3$?

Ex3: Compare with other estimators

• $\xi \sim \text{GMM}(\pi, \mu, \Sigma)$ with 5 components

• across components -
$$\mu_{\xi} = -18.6 \sigma_{\xi} = 2.9$$

• Which project has lowest entropic risk based on 100 sets of 10000 samples with $\alpha = 3$?

Going from estimation to optimization

Distributionally robust optimization

• Loss depends on $z \in \mathcal{Z}$:

$$\rho^* = \min_{z \in \mathcal{Z}} \rho_{\mathbb{P}}(\ell(z, \boldsymbol{\xi}))$$

Sample average approximation

$$\rho_{SAA} = \min_{z \in \mathcal{Z}} \rho_{\hat{\mathbb{P}}_{N}}(\ell(z, \xi))$$

• DRO accounts for distributional ambiguity:

$$\rho_{DRO} = \min_{z \in \mathcal{Z}} \sup_{\mathbb{Q} \in \mathscr{B}_p(\epsilon)} \rho_{\mathbb{Q}}(\ell(z, \xi))$$

 $\mathscr{B}_{p}(\epsilon)$

Distributionally robust optimization

Distributionally robust optimization

 \boxtimes KL divergence and Type-p Wasserstein ($p < \infty$): unbounded worst-case loss

Distributionally robust optimization

 \boxtimes Type ∞ – Wasserstein: bounded loss

Distributionally robust optimization

 \boxtimes Type ∞ – Wasserstein: bounded loss

Theorem: $\rho_{SAA} \to \rho^*, \rho_{DRO} \to \rho^*$ in probability at rate $\mathcal{O}(1/\sqrt{N})$

Regularized exponential cone program

Regularized exponential cone program

$$\mathbb{E}_{\mathbb{P}_N}\left[\exp(\alpha z^{\mathsf{T}}\boldsymbol{\xi})\right] + \boldsymbol{\epsilon} \|\boldsymbol{z}\|_*$$

Regularized exponential cone program

- More general loss functions refer to our paper
- How to choose the radius ϵ ?
- Validation data underestimates the true risk
 - suboptimal radius
 - Bias correction using bootstrapping

$$\mathbb{E}_{\mathbb{P}_N}\left[\exp(\alpha z^{\mathsf{T}}\boldsymbol{\xi})\right] + \boldsymbol{\epsilon} \|\boldsymbol{z}\|_*$$

- Insurer offers coverage $z_h \xi$ at premium π_h
- α_h : homeowner's risk preference
- α_0 : insurer's risk preference

- Insurer offers coverage $z_h \xi$ at premium π_h
- α_h : homeowner's risk preference
- α_0 : insurer's risk preference

Demand response model: Household accept/reject the contract based on their estimate of empirical entropic risk

 (π_1, z_1)

 (π_2, z_2)

Reformulation as exponential cone

- A coverage of $z_h \xi$ is offered at premium π_h
- α_h : homeowner's risk preference
- α_0 : insurer's risk preference

$$\min \quad \rho_{\hat{\mathbb{P}}_{N}}^{\alpha_{0}} \left(\boldsymbol{z}^{\mathsf{T}} \boldsymbol{\xi} - \boldsymbol{1}^{\mathsf{T}} \boldsymbol{\pi} \right) + \epsilon \| \boldsymbol{z} \|_{*}$$

s.t. $\boldsymbol{\pi} \in \mathbb{R}_{+}^{M}, \boldsymbol{z} \in [0, 1]^{M}$
 $\rho_{\hat{\mathbb{P}}_{h,N}}^{\alpha_{h}} \left(\pi_{h} + (1 - z_{h}) \boldsymbol{\xi}_{h} \right) \leq \rho_{\hat{\mathbb{P}}_{h,N}}^{\alpha_{h}} \left(\boldsymbol{\xi}_{h} \right)$

Data for numerical experiments:

Loss scenarios are generated from Gaussian copula with $\Gamma(\kappa_h, \lambda_h)$ marginals

Out-of-sample risk and radius - vary N

SAA BS-EVT 💿 BS-Match 💿 Oracle 💿 CV 💿 SAA

Risk decreases as training samples increase Our models choose higher radius while traditional CV chooses lower radius

500

1000

N

5000

10000

Premium per unit coverage - vary N

Households pay higher premiums as their estimates of risk improve with N

Out-of-sample risk and radius - vary correlation

High correlation: extreme loss events more likely to occur simultaneously, increasing insurer's risk exposure

Premium per unit coverage - vary correlation

High correlation: benefits of risk pooling diminish, reduce coverage significantly to reduce risk exposure

Why our models identify better radius?

Take-away message

- Entropic risk estimation and optimization
 - Two practical approaches to reduce optimistic bias
- Future research:
 - Extend to CVaR
 - Solve exponential cones faster

Link to paper

Take-away message

- Entropic risk estimation and optimization
 - Two practical approaches to reduce optimistic bias
- Future research:
 - Extend to CVaR
 - Solve exponential cones faster

Link to paper

