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It is not a calculated risk if you haven'’t calculated it.

li

- Naved Abda




What this talk is about? Tails and Bias

* Uncertain loss
* Risk measure: Map loss to a real
number True risk
 Entropic risk measure:
- mean
- variance Bias (0)
- Higher moments

e Estimation

Estimated
- True risk - Use known loss distribution | risk
- We have data - construct risk
estimator
Oracle’s

lever



What this talk is about? Tails and Bias

True risk

Estimated
risk
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What this talk is really about? Tails and bias mitigation

True risk

Estimated
risk

Our
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Beyond risk neutrality
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Entropic risk measure

Uncertainty Loss Entropic risk
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e IS the decision maker’s risk aversion
e [ is not known




Empirical entropic risk

Data (D y)

Empirical entropic risk
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Empirical entropic risk underestimates true entropic risk:

- Jensen’s inequality: E[empirical risk] < True risk |

v’ Optimized certainty equivalent (OCE) measure

: 1
pp(£(8)) = iItlf ’p (t + —exp(a(Z(&) — 1)) — _)

\ 04 a
— replace with [P, (optimizer’s curse)




Ex 1: pricing insurance
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Influence function (IF)

Influence function (IF) - impact of data removal on risk
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Bias

mitigation with bootstrapping

Efficiently computable risk under ()
Gaussian mixture models are universal function approximators

po(@) = (Lalog ( X m explap, + a “0,/2)

\_

- Fit a distribution:’@}to the loss scenarios

 Draw N samples}"rom (), compute risk p,, and

Bootstrap R

| Bias: 6= E[pp(() - pPN«:)]

repeat M times

. Bias: 5,(Q) = median[{pa() — p 1] ]

i Theorem: Under some assumptions on tails of {: |

pp (¢) + oy (L2) almost surely converges to true entropic risk ﬂ
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Model 1: Fit using maximum likelihood (BS-MLE)

Statistics of bias correction
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Ex: Compute entropic risk

&€ ~ GMM(z, u, 6),

7 =1[0.70.3],u=1[051],
c=1[21]

BS-MLE - Fit () using MLE
Underestimation persists
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' Fit distribution ) whose samples

| | q
*. have the same bias as the bias ,~*
S In the data _—"

>

Bias mitigation using Bias-aware bootstrapping
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Model 2: Entropic risk matching (BS-Match)

ldea: Match distributions of the entropic risk over the samples
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Model 3: Extreme value theory (BS-Match)

o Loss scenarios (i, (5, *+, C,, iid

e M, =max{({;,(, "+, C,}

Our approach:

* cdf normal rv - ®(u, o)

* Fit ®"(u, o) to my,m,, -+, my
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Model 3: Extreme value theory (BS-Match)

Compute max in
each bin

Our approach:

* cdf normal rv - ®(u, o)

* Fit ®"(u, 0) to m, m,, ---, my

=
1 2
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Ex 2: Bias mitigation

Statistics of bias correction

o True ®iBS-MLE i BS-EVT i BS-Match

* Ex: Compute entropic risk

e £~ GMM(x,u,0), 7 = [0.7 0.3],
u=1[051],0=[21]

| * BS-MLE - Fit () using MLE

* Underestimation persists
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Ex3: Compare with estimators from literature
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Statistics of estimate of entropic risk
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* across components -

» Which project has lowest

entropic risk based on 100 sets
of 10000 samples with ¢ = 3?
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Going from estimation to optimization
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Distributionally robust optimization

*Loss dependsonz € #:

p* = min pp(£(z,§))
IEF

* Sample average approximation

Psaa = Minpp (£(2,6))
IEF

- DRO accounts for distributional ambiguity:

Ppro = MiN  sup pg(£(z,$))
2€ZL Qe (€)
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Distributionally robust optimization

™ KL divergence and Type-p Wasserstein (p < 00): unbounded worst-case loss

™ Type co—Wasserstein: bounded loss

Theorem: poi 4 — P*, Ppro — P¥ in probability at rate @(l/ﬁ)
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Regularized exponential cone program

[ Theorem: With a linear loss function £z, 7E with type-co |
' Wasserstein ambiguity set reduces to:

1
mm—log(-@ [exp((xz §)])+€|\ZH*
€EZ A N

* More general loss functions - refer to our paper

- How to choose the radius €7

- Validation data - underestimates the true risk
- suboptimal radius

- Bias correction using bootstrapping



Distributionally robust insurance pricing

* Insurer offers coverage z,& at premium 7,

* a;: homeowner’s risk preference

* Q. Insurer’s risk preference

o (z'€—1"7) + €lz]|«

sup

Demand response model: Household accept/reject the
contract based on their estimate of empirical entropic risk




Reformulation as exponential cone

* Acoverage of 7,& is offered at premium 7,
* a;: homeowner’s risk preference

* Q. Insurer’s risk preference

a A

min p® (27— 17x) +e|z]l-
N

Data for numerical experiments:

Loss scenarios are generated from Gaussian copula with 1'(k;,, 4,) marginals



Out-of-sample risk and radius - vary N

<1 BS-EVT =1 BS-Match = Oracle = CV &8 SAA

<1 BS-EVT =1 BS-Match &= Oracle = CV
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Risk decreases as training samples increase
Our models choose higher radius while traditional CV chooses lower radius



Premium per unit coverage - vary N

<1 BS-EVT ®= BS-Match = Oracle 1 CV g SAA
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Households pay higher premiums as their estimates of risk improve with N
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Out-of-sample risk and radius - vary correlation

<1 BS-EVT & BS-Match = Oracle & CV

<1 BS-EVT == BS-Match &= Oracle = CV = SAA
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High correlation: extreme loss events more likely to occur simultaneously, increasing
Insurer’s risk exposure
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Premium per unit coverage - vary correlation

=1 BS-EVT == BS-Maich &5 Oracle =1 CV @8 SAA
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High correlation: benefits of risk pooling diminish, reduce coverage significantly to
reduce risk exposure

28



Why our models identify better radius?
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Estimate of out-of-sample risk

0.0 03 06 09 13 16 19 22 25 28 32 35 38 41 44 47 51 54 57 6.0
Radius

Model B9 BS-EVT E5 BS-Match (5 CV E3 Oracle




Take-away message

* Entropic risk estimation and optimization
* Two practical approaches to reduce optimistic
bias

* Future research:
» Extend to CVaR
» Solve exponential cones faster

I-I-

Link to paper
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